Генераторы постоянного тока, также как и двигатели, различают по характеру их возбуждения. В зависимости от этого их подразделяют на генераторы независимого возбуждения и самовозбуждением. В генераторах независимого возбуждения поток возбуждения может создаваться обмоткой возбуждения (электромагнитное возбуждение) или с помощью постоянного магнита (магнитоэлектрическое возбуждение). Генераторы с самовозбуждением бывают параллельного и смешанного возбуждения(см. ).
Рис. 5-9а. Схема генератора постоянного тока.
О свойствах генератора судят по его основным характеристикам, к которым относят характеристику холостого хода, а также нагрузочную, внешнюю и регулировочную.
Под характеристикой холостого хода понимают зависимость U=f(IB) при IЯ=0 и ω=const (кривая 1 на ). Эта зависимость характеризует свойства магнитной цепи машины, и по ней можно определить условие самовозбуждения генератора с параллельным возбуждением, это возможно, если сопротивление обмоток возбуждения меньше критического RВХ. При выполнении этого условия установившееся значение напряжения на выходе генератора будет соответствовать точке пересечения характеристики холостого хода и прямой IB·RB (см. ).
Рис. 5-9б. Статическая характеристика генератора постоянного тока.
Внешняя характеристика () представляет собой зависимость U=f(IЯ) при ω=const.
Рис. 5-9в. Статическая характеристика генератора постоянного тока.
Кривая 1 соответствует генератору с независимым возбуждением при IB=const.С увеличением тока якоря (нагрузки) напряжение на зажимах генератора уменьшается из-за падения напряжения на сопротивлении якоря RЯ и реакции якоря. В генераторе с параллельным возбуждением это уменьшение происходит более интенсивно (кривая 2), так как оно усугубляется уменьшением тока возбуждения. Для компенсации уменьшения напряжения при увеличении нагрузки применяется комбинированное возбуждение (кривая 3).
|
Нагрузочная характеристика - это зависимость U=f(IB) при IЯ=const (кривая 2 на ). Она проходит ниже характеристики холостого хода 1 вследствие падения напряжения в якорной цепи и реакции якоря. Чем больше ток якоря, тем ниже характеристика 2 проходит по отношению к характеристике 1.
Регулировочная характеристика - это зависимость IB=f(IЯ) при U=const (). Чтобы поддержать напряжение постоянным, необходимо при увеличении тока IЯ увеличивать ток возбуждения.
Рис. 5-9г. Статическая характеристика генератора постоянного тока.
В системах автоматического управления широкое применение имеют тахогенераторы постоянного тока. Тахогенераторы представляют собой генераторы небольшой мощности, служащие для преобразования частоты вращения в электрический сигнал. Как правило, тахогенераторы выполняют с независимым электромагнитным или магнитоэлектрическим возбуждением ().
Рис. 5-10а,б. Схема тахогенератора.
Выходная характеристика тахогенератора - это зависимость UТГ=f(ω). Она может быть получена из анализа эквивалентной схемы якорной цепи, представленной на . Откуда в установившемся режиме получим:
Из этих уравнений получим выражение для выходной характеристики:
,
где KТГ- коэффициент передачи тахогенератора, который определяет крутизну выходной характеристики тахогенератора (см. ). Чем больше КЭМ=К`ЭМ·ФB и больше RH по сравнению с RЯ тем больше крутизна характеристики.
|
Рис. 5-10в. Характеристики тахогенератора.
Из следует, что выходное напряжение UТГ и при нагрузке является линейной функцией частоты вращения. Однако практически выходная характеристика отклоняется от линейной () из-за реакции якоря, ослабляющей поток возбуждения ФВ. Отклонение от линейности определяет одну из основных погрешностей тахогенератора. Для уменьшения ее следует нагружать тахогенератор на относительно большое сопротивление нагрузки RH и использовать небольшой диапазон частот вращения.
Тахогенератор как динамическая система описывается уравнениями, аналогичными уравнениям :
Откуда может быть получена передаточная функция тахогенератора
,
где - постоянная времени тахогенератора.
Вентильные двигатели
Машины постоянного тока имеют более высокие технические показатели (линейность характеристики, высокий КПД, малые габариты), чем машины переменного тока. Существенный недостаток - наличие электромеханического коллектора, который снижает надежность, создает радиопомехи, взрывоопасность и т.д.
Этих недостатков лишен бесконтактный двигатель постоянного тока, называемый вентильным двигателем. В этом двигателе щеточный аппарат заменен полупроводниковым коммутатором, якорь находится на статоре, а ротор представляет собой двухполюсный (реже четырехполюсный) постоянный магнит. Для упрощения коммутатора число секции обмотки якоря выбирается малым - три, четыре.
Рис. 5-11а. Трехфазный вентильный двигатель.
Схема трехфазного вентильного двигателя с двухполюсным ротором представлена на . Существенным элементом двигателя является датчик положения - ДПР. Он может основан на разных принципах - фотоэлектрические, индуктивные, емкостные, на эффекте Холла, и т.д. В рассматриваемом двигателе применяется фотоэлектрический датчик, содержащий три неподвижных фотоприемника mlk, которые закрываются поочередно вращающейся шторкой. Двоичный код, получаемый с ДПР, фиксирует шесть различных положений ротора (шесть фаз), это соответствие кодов и фаз приведено в верхней части .
|
Фаза | ||||||
K | ||||||
L | ||||||
M | ||||||
U1 | ||||||
U2 | ||||||
U3 | ||||||
U4 | ||||||
U5 | ||||||
U6 |
В этой таблице единице соответствует наличие сигнала на выходе датчика, т.е. когда фотоприемник открыт, а нулю - отсутствие сигнала, когда соответствующий фотоэлемент закрыт шторкой.
Рис. 5-11б. Трехфазный вентильный двигатель.
Сигналы датчиков преобразуются управляющим устройством УУ () в комбинацию управляющих напряжений U1-U6, которые управляют транзисторными ключами K1-K6 согласно нижней части , так, что в каждый такт (фазу) работы двигателя включены два ключа - верхний и нижний и к сети подключены последовательно две из трех обмоток якоря. Обмотки якоря a,b,c расположены на статоре со сдвигом на 120·град (см. ) и их начала и концы соединены так, что при переключении ключей создается вращающееся магнитное поле. Одному циклу работы коммутатора соответствует один оборот ротора. Цикл делится на шесть тактов (временных фаз), которым соответствует пространственный угол α=60·град. Коммутация производится так, что поток возбуждения Ф0 отстает на угол α от потока якоря. На токи в обмотках и положение ротора показаны для фазы 1. В результате взаимодействия потока якоря и возбуждения создается вращающий момент M, который стремится развернуть ротор так, чтобы потоки якоря и возбуждения совпали, но при повороте ротора под действием ДПР происходит переключение обмоток и поток якоря поворачивается на следующий шаг.
Рис. 5-12б. Временная диаграмма трехфазного вентильного двигателя.
Временная диаграмма работы вентильного двигателя приведена на . Как видно из диаграммы, вентильный двигатель работает как в данном случае трехфазный синхронный двигатель, частота вращения его ротора пропорциональна частоте вращения поля. Основным отличием от синхронного является его самосинхронизация с помощью ДПР, в результате чего у этого двигателя, наоборот, частота вращения поля пропорциональна (в данном случае при двухполюсном якоре равна) частоте вращения ротора, а частота вращения ротора зависит от напряжения питания, т.е. двигатель работает как двигатель постоянного тока.
В отличие от двигателя постоянного тока, так как вентильный двигатель имеет мало секций в обмотке якоря, момент имеет пульсации, и среднее значение момента зависит от периода включения ключа β, показанного на .
В получена формула для среднего значения электромагнитного момента вентильного двигателя
где M*и ω*- относительные момент и частота вращения по отношению к базовым:
; ; ; ,
где m- число обмоток (секций), R- сопротивление секции.
Учитывая эти соотношения, из можно получить выражение для механической характеристики вентильного двигателя
,
где A и B- коэффициенты, зависящие от β.
;
Эти коэффициенты зависят от способа коммутации обмоток и приведены в .
Способ коммутации | β | A | B | m |
Парная | Π | 1.27 | ||
Поочередная(полушаги) | 1.24 | 4.1 | ||
Трехфазная | 1.17 | 4.17 | ||
Одинарная | 1.02 | 8.4 |
В рассматриваемом примере применена трехфазная коммутация, другие перечисленные в способы коммутации соответствуют коммутации обмоток в шаговых двигателях, так как вентильный двигатель можно через датчик положения ротора. Механические характеристики показаны на .
Рис. 5-13а. Механические характеристики вентильного двигателя.
При рассмотрении динамики вентильного двигателя надо дополнить уравнение уравнением движения вида
Рис. 5-13б. Структурная схема вентильного двигателя.
На основании и может быть построена структурная схема (), по которой получена передаточная функция
,
где - коэффициент передачи двигателя, - электромеханическая постоянная времени.
Таким образом, вентильный двигатель по своим статическим и динамическим характеристикам подобен двигателю постоянного тока.