Восходящие и нисходящие потоки




МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

ФИЛИАЛ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ

«САМАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ И СООБЩЕНИЯ» В Г.ПЕНЗЕ.

ФИЛИАЛ САМГУПС В Г.ПЕНЗЕ.

Доклад по дисциплине: индивидуальный проект

На тему «от чего бывают грозы»

Студента группы:СДМ-19-38

Принял преподаватель: Выполнил студент:

Борисова А.А Жиженков Роман

Содержание:

1.Введение

2.Физические характеристики

2.1 Восзодящие и исходящие потоки

2.2 Вертикальное развитие

2.3 Турбулентность

2.4 Движение

2.5 Энергия

3. Электрическая структура

3.1 Механизм электризации

4. Почему образуются грозы?

От чего бывают грозы?

Гроза́ — атмосферное явление, при котором внутри облаков или между обл1ми и земной поверхностью возникают электрические разряды — молнии, сопровождаемые громом. Как правило, гроза образуется в мощных кучево-дождевых облаках и связана с ливневым дождём, градом и шквальным усилением ветра.

Гроза — одно из самых опасных для человека явлений, связанных с погодой: по количеству зарегистрированных смертных случаев только внезапные наводнения приводят к бо́льшим людским потерям

Стадии развития

Стадии развития грозового облака.

Необходимыми условиями для возникновения грозового облака является наличие условий для развития конвекции или иного механизма, создающего восходящие потоки запаса влаги, достаточного для образования осадков, и наличия структуры, в которой часть облачных частиц находится в жидком состоянии, а часть — в ледяном. Конвекция, приводящая к развитию гроз, возникает в следующих случаях:

· при неравномерном нагревании приземного слоя воздуха над различной подстилающей поверхностью. Например, над водной поверхностью и сушей из-за различий в температуре воды и почвы. Также при перемещении холодных воздушных масс на тёплую земную поверхность и над прогретой сушей летом (местные, или тепловые грозы). Над крупными городами интенсивность конвекции значительно выше, чем в окрестностях города.

· при подъёме или вытеснении тёплого воздуха холодным на атмосферных фронтах. Атмосферная конвекция на атмосферных фронтах значительно интенсивнее и чаще, чем при внутримассовой конвекции. Часто фронтальная конвекция развивается одновременно со слоисто-дождевыми облаками и обложными осадками, что маскирует образующиеся кучево-дождевые облака.

· при подъёме воздуха в районах горных массивов. Даже небольшие возвышенности на местности приводят к усилению образования облаков (за счёт вынужденной конвекции). Высокие горы создают особенно сложные условия для развития конвекции и почти всегда увеличивают её повторяемость и интенсивность.

Все грозовые облака, независимо от их типа, последовательно проходят 3 стадии:

1. кучевое облако

2. зрелое грозовое облако

Физические характеристики грозовых облаков

Самолётные и радарные исследования показывают, что единичная грозовая ячейка обычно достигает высоты порядка 8—10 км и живёт порядка 30 минут. Изолированная гроза обычно состоит из нескольких ячеек, находящихся в различных стадиях развития, и длится порядка часа. Крупные грозы могут достигать в диаметре десятков километров, их вершина может достигать высоты свыше 18 км, и они могут длиться много часов.

Восходящие и нисходящие потоки

Восходящие и нисходящие потоки в изолированных грозах обычно имеют диаметр от 0,5 до 2,5 км и высоту от 3 до 8 км. Иногда диаметр восходящего потока может достигать 4 км. Вблизи поверхности земли потоки обычно увеличиваются в диаметре, а скорость в них падает по сравнению с выше расположенными потоками. Характерная скорость восходящего потока лежит в диапазоне от 5 до 10 м/с и доходит до 20 м/с в верхней части крупных гроз. Исследовательские самолёты, пролетающие сквозь грозовое облако на высоте 10 000 м, регистрируют скорость восходящих потоков свыше 30 м/с. Наиболее сильные восходящие потоки наблюдаются в организованных грозах.

 

В некоторых грозах возникают интенсивные нисходящие воздушные потоки, создающие на поверхности земли ветер разрушительной силы. В зависимости от размера такие нисходящие потоки называются шквалами или микрошквалами. Шквал диаметром более 4 км может создавать ветер до 60 м/с. Микрошквалы имеют меньшие размеры, но создают ветер скоростью до 75 м/с. Если порождающая шквал гроза образуется из достаточно тёплого и влажного воздуха, то микрошквал будет сопровождаться интенсивным ливневым дождём. Однако, если гроза формируется из сухого воздуха, осадки во время выпадения могут испариться (испаряющиеся в воздухе полосы осадков или virga), и микрошквал будет сухим. Нисходящие воздушные потоки являются серьёзной опасностью для самолётов, особенно во время взлёта или посадки, так как они создают вблизи земли ветер с сильными внезапными изменениями скорости и направления.

Вертикальное развитие

В общем случае, активное конвективное облако будет подниматься до тех пор, пока оно не утратит плавучесть. Потеря плавучести связана с нагрузкой, создаваемой образовавшимися в облачной среде осадками, или смешением с окружающим сухим холодным воздухом, или комбинацией этих двух процессов. Рост облака также может быть остановлен слоем блокирующей инверсии, то есть слоем, где температура воздуха растёт с высотой. Обычно грозовые облака достигают высоты порядка 10 км, но иногда достигают высот более 20 км. Когда влагосодержание и нестабильность атмосферы высоки, то при благоприятном ветре облако может вырасти до тропопаузы, слоя, отделяющего тропосферу от стратосферы. Тропопауза характеризуется температурой, остающейся приблизительно постоянной с ростом высоты и известной как область высокой стабильности. Как только восходящий поток начинает приближаться к стратосфере, то довольно скоро воздух в вершине облака становится холоднее и тяжелее окружающего воздуха, и рост вершины останавливается. Высота тропопаузы зависит от широты местности и от сезона года. Она варьируется от 8 км в полярных регионах до 18 км и выше вблизи экватора.

Когда кучевое конвективное облако достигает блокирующего слоя инверсии тропопаузы, оно начинает растекаться в стороны и образует характерную для грозовых облаков «наковальню». Ветер, дующий на высоте наковальни, обычно сносит облачный материал по направлению ветра.

Турбулентность

Самолёт, пролетающий сквозь грозовое облако (залетать в кучево-дождевые облака запрещается), обычно попадает в болтанку, бросающую самолёт вверх, вниз и в стороны под действием турбулентных потоков облака. Атмосферная турбулентность создаёт ощущение дискомфорта для экипажа самолёта и пассажиров и вызывает нежелательные нагрузки на самолёт. Турбулентность измеряется разными единицами, но чаще её определяют в единицах g — ускорения свободного падения (1g = 9,8 м/с2). Шквал в один g создаёт опасную для самолётов турбулентность. В верхней части интенсивных гроз зарегистрированы вертикальные ускорения до трёх g.

Движение

Скорость и движение грозового облака зависит от направления ветра, прежде всего, взаимодействия восходящего и нисходящего потоков облака с несущими воздушными потоками в средних слоях атмосферы, в которых развивается гроза. Скорость перемещения изолированной грозы обычно порядка 20 км/ч, но некоторые грозы двигаются гораздо быстрее. В экстремальных ситуациях грозовое облако может двигаться со скоростями 65—80 км/ч — во время прохождения активных холодных фронтов. В большинстве гроз по мере рассеивания старых грозовых ячеек последовательно возникают новые грозовые ячейки. При слабом ветре отдельная ячейка за время своей жизни может пройти совсем небольшой путь, меньше двух километров; однако в более крупных грозах новые ячейки запускаются нисходящим потоком, вытекающим из зрелой ячейки, что создаёт впечатление быстрого движения, не всегда совпадающего с направлением ветра. В больших многоячейковых грозах существует закономерность, когда новая ячейка формируется справа по направлению несущего воздушного потока в северном полушарии и слева от направления несущего потока в южном полушарии.

Энергия

Энергия, которая приводит в действие грозу, заключена в скрытой теплоте, высвобождающейся, когда водяной пар конденсируется и образует облачные капли. На каждый грамм конденсирующейся в атмосфере воды высвобождается приблизительно 600 калорий тепла. Когда водяные капли замерзают в верхней части облака, дополнительно высвобождается ещё около 80 калорий на грамм. Высвобождающаяся скрытая тепловая энергия частично преобразуется в кинетическую энергию восходящего потока. Грубая оценка общей энергии грозы может быть сделана на основе общего количества воды, выпавшей в виде осадков из облака.

 

Электрическая структура

Распределение и движение электрических зарядов внутри и вокруг грозового облака является сложным непрерывно меняющимся процессом. Тем не менее, можно представить обобщённую картину распределения электрических зарядов на стадии зрелости облака. Доминирует положительная дипольная структура, в которой положительный заряд находится в верхней части облака, а отрицательный заряд находится под ним внутри облака. В основании облака и под ним наблюдается нижний положительный заряд. Атмосферные ионы, двигаясь под действием электрического поля, формируют на границах облака экранирующие слои, маскирующие электрическую структуру облака от внешнего наблюдателя. Измерения показывают, что в различных географических условиях основной отрицательный заряд грозового облака расположен на высотах с температурой окружающего воздуха от −5 до −17 °C. Чем больше скорость восходящего потока в облаке, тем на большей высоте находится центр отрицательного заряда. Плотность объёмного заряда лежит в диапазоне 1-10 Кл/км³. Существует заметная доля гроз с инверсной структурой зарядов: — отрицательным зарядом в верхней части облака и положительным зарядом во внутренней части облака, а также со сложной структурой с четырьмя и более зонами объёмных зарядов разной полярности.

Механизм электризации

Для объяснения формирования электрической структуры грозового облака предлагалось много механизмов, и до сих пор эта область науки является областью активных исследований. Основная гипотеза основана на том, что если более крупные и тяжёлые облачные частицы заряжаются преимущественно отрицательно, а более лёгкие мелкие частицы несут положительный заряд, то пространственное разделение объёмных зарядов возникает за счёт того, что крупные частицы падают с большей скоростью, чем мелкие облачные компоненты. Этот механизм, в целом, согласуется с лабораторными экспериментами, которые показывают сильную передачу заряда при взаимодействии частиц ледяной крупы (крупа — пористые частицы из замёрзших водяных капелек) или града с ледяными кристаллами в присутствии переохлаждённых водяных капель. Знак и величина передаваемого при контактах заряда зависят от температуры окружающего воздуха и водности облака, но также и от размеров ледяных кристаллов, скорости столкновения и других факторов. Возможно также действие и других механизмов электризации. Когда величина накопившегося в облаке объёмного электрического заряда становится достаточно большой, между областями, заряженными противоположным знаком, происходит молниевый разряд. Разряд может произойти также между облаком и землёй, облаком и нейтральной атмосферой, облаком и ионосферой. В типичной грозе от двух третей до 100 процентов разрядов приходятся на внутриоблачные разряды, межоблачные разряды или разряды облако — воздух. Оставшаяся часть — это разряды облако-земля. В последние годы стало понятно, что молния может быть искусственно инициирована в облаке, которое в обычных условиях не переходит в грозовую стадию. В облаках, имеющих зоны электризации и создающих электрические поля, молнии могут быть инициированы горами, высотными сооружениями, самолётами или ракетами, оказавшимися в зоне сильных электрических полей.

    Почему образуются грозы? Почему во время грозы гремит гром и сверкает молния? В наше время ответ на этот простой с виду вопрос знает даже школьник. В облаках накапливаются электрические заряды, что приводит к гигантской электрической искре – молнии. Воздух в месте её проскакивания сильно нагревается и расширяется – мы слышим гром. То есть, гром и молния – это проявления атмосферного электричества. Однако возникает вопрос: откуда оно берётся, да ещё в таких огромных количествах? В каком-либо месте (обычно на склонах возвышенностей) образуется восходящий поток тёплого воздуха. Он втягивает в себя увлажнённый воздух с большой площади земной поверхности, перенося его вверх.
  Так образуются кучевые облака «вертикального развития», которые вскоре станут грозовыми облаками (см. левый рисунок). Если влагосодержание воздуха велико и имеются благоприятные условия, облако растёт в вертикальном и горизонтальном направлениях. Когда его вершина достигнет высоких слоёв атмосферы с отрицательной температурой, начинается образование из мельчайших капелек водяного пара более крупных и более тяжёлых кристалликов льда. Они начинают падать вниз внутри облака. В этот момент основание облака темнеет, принимая тёмный «свинцовый» оттенок (см. правый рисунок). Не только в тропиках, но и в других широтах тоже образуются такие облака, размеры которых могут достигать нескольких километров. Падая внутри облака, капли воды или кристаллики льда электризуются при столкновениях с молекулами воздуха, а также другими микроскопическими частицами. В результате капли или льдинки приобретают отрицательный заряд и переносят его в нижнюю часть тучи, которая, таким образом, становится электрически заряженной (грозовой) тучей.

Поскольку нижняя часть тучи оказывается заряженной отрицательно, а верхняя – положительно, эти заряды притягиваются. Поэтому до поры до времени капельки или льдинки удерживаются электрическим притяжением внутри тучи, в нижней её части. Однако скопившийся внизу тучи большой отрицательный заряд по индукции притягивает к себе положительный заряд в поверхностном слое земли. В результате между облаком и землёй возникает огромное напряжение – десятки и сотни миллионов вольт. Электрическое поле становится настолько сильным, что возникает электрический разряд через воздух в виде огромной искры длиной иногда в несколько километров. Это и есть молния.

 

Молнии переносят отрицательный заряд на Землю, снова и снова заряжая её. Однако, как выяснили учёные, электрический заряд Земли в целом невелик и составляет около 500 000 кулонов (это приблизительно как у двух автомобильных аккумуляторов). Куда же исчезает тот огромный отрицательный заряд, переносимый молниями к поверхности Земли? Ведь ежесекундно на всей нашей планете происходит около 50 вспышек молнии!

Дело в том, что выше 100 км от поверхности Земли расположен слой атмосферы под названием «ионосфера». Он представляет собой разреженный атмосферный воздух, в котором есть как электронейтральные молекулы, так и заряженные частицы: ионы и электроны. Их концентрация может достигать десятков и сотен тысяч в кубическом сантиметре воздуха. Ионосфера существует потому, что Солнце постоянно испускает потоки заряженных частиц, ультрафиолетовое и рентгеновское излучения, которые «выбивают» из молекул электроны, образуя множество ионов.

В ясную погоду днём и ночью Земля постепенно разряжается: между ионосферой и поверхностью Земли постоянно идёт слабый объёмный ток, пронизывающий атмосферу. Хотя мы и привыкли считать воздух изолятором, в нём, тем не менее, есть малая доля ионов, позволяющая существовать этому току во всём объёме атмосферы. Он медленно, но верно переносит отрицательный заряд с поверхности земли на высоту, поэтому суммарный заряд всей планеты сохраняется.

Как видите, грозы образуются из-за сложнейших атмосферных явлений планетарного масштаба.

 

 

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-12-08 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: