Ткани организма представляют собой по электрическим свойствам разнородную среду. Органические вещества (белки, жиры, углеводы и др.), из которых состоят плотные части тканей, являются диэлектриками. Однако все ткани и клетки в организме содержат жидкости или омываются ими (кровь, лимфа, различные тканевые жидкости), в состав этих жидкостей кроме органических коллоидов входят также растворы электролитов, и поэтому они являются хорошими проводниками.
Наилучшую электропроводность имеют спинно-мозговая жидкость, сыворотка крови, несколько меньшую - цельная кровь и мышечная ткань. Значительно меньше электропроводность тканей внутренних органов, а также нервной, жировой и соединительной тканей. Плохими проводниками являются роговой слой кожи, связки и сухожилия, костная ткань без надкостницы. В ряде случаев их можно отнести даже к диэлектрикам.
Ткани организма состоят из структурных организмов - клеток, омываемых тканевой жидкостью. Цитоплазма клетки отделена от тканевой жидкости клеточной мембраной. Тканевая жидкость и цитоплазма - хорошие проводники. Клеточная мембрана проводит электрический ток плохо. Такая система напоминает конденсатор и обладает электрической емкостью.
В тканях встречаются и макроскопические образования, состоящие из различных соединительных оболочек и перегородок, по обе стороны которых находятся ткани, обильно снабженные тканевой жидкостью. Все это придает тканям емкостные свойства.
Как показывает опыт, ткани организма не имеют практически заметной индуктивности, но обладают емкостью и активным сопротивлением. Поэтому при прохождении переменного тока через ткани организма следует учитывать их полное сопротивление, или импеданс.
|
Электрические параметры участка тканей организма, находящиеся между наложенными на поверхность тела электродами, можно представить в виде эквивалентных электрических схем.
В наиболее упрощенном виде эта схема для слоя кожи и подкожной клетчатки может быть представлена как значительная емкость C (Рис.6, а), шунтированная большим сопротивлением R и включенная последовательно со значительно меньшим сопротивлением R *, а для глубоко лежащих тканей - это включенные параллельно сопротивление и емкость (Рис.6, б).
Импеданс тканей организма зависит от множества физиологических условий, основным из которых является состояние кровообращения, в частности кровонаполнение сосудов.
Дисперсия импеданса
Ткани организма проводят не только постоянный, но и переменный ток. Опыт показывает, что в этом случае сила тока, проходящая через биологическую ткань, опережает по фазе приложенное напряжение. Следовательно, емкостное сопротивление тканей больше индуктивного.
Отсюда следует, что моделировать электрические свойства биологических тканей можно, используя резисторы, которые обладают активным сопротивлением, и конденсаторы - носители емкостного сопротивления. В качестве модели обычно используют эквивалентную электрическую схему тканей организма. Она представляет собой схему, состоящую из резисторов и конденсаторов, частотная зависимость (дисперсия) импеданса которой близка к частотной зависимости импеданса биологической ткани.
На рис. 2.8 представлен график частотной зависимости импеданса мышечной ткани в логарифмических координатах. Из графика видны две особенности этой зависимости: во-первых, плавное уменьшение импеданса с увеличением частоты (общий ход зависимости импеданса от частоты) и, во-вторых, наличие трех областей частот, в которых имеет место отклонение от общего хода зависимости импеданса от частоты: Z мало изменяется. Они были названы, соответственно, областями α-, β - и γ -дисперсии импеданса.
|
Наиболее удачно экспериментальной зависимости импеданса мышечной ткани от частоты соответствует схема, приведенная на рис. 2.9. Важно отметить, что при этом электроемкость и, следовательно, диэлектрическая проницаемость остаются постоянными.
Поясним причину возникновения областей α-, β - и γ -дисперсии импеданса. Ткань организма является структурой, обладающей свойствами проводника (электролита) и диэлектрика. Поляризация диэлектрика во внешнем электрическом поле происходит не мгновенно, а зависит от времени. Это означает зависимость от времени поляризованности диэлектрика (Ре) при воздействии постоянного электрического поля (Е — напряженность электрического поля):
Если электрическое поле изменяется по гармоническому закону, то поляризованность будет также изменяться по гармоническому закону, а амплитуда поляризованности будет зависеть от частоты изменения поля с запаздыванием по фазе:
Выражение для диэлектрической проницаемости имеет вид:
. (39)
Из (39) следует, что имеет место частотная засимость диэлектрической проницаемости при воздействии переменным (гармоническим) электрическим полем: . Изменение диэлектрической проницаемости с изменением частоты электрического поля означает изменение электроемкости и, как следствие, изменение импеданса.
|
Запаздывание изменения поляризованности относительно изменения напряженности электрического поля зависит от механизма поляризации вещества. Самый быстрый механизм — электронная поляризация, так как масса электронов достаточно мала. Это соответствует частотам (около 1015 Гц), которые существенно превышают области α-, β - и γ -дисперсии.
Ориентационная поляризация воды, молекулы которой имеют сравнительно малую массу, соответствует γ -дисперсии (частоты около 20 ГГц).
Крупные полярные органические молекулы, например белки, имеют значительную массу и успевают реагировать на переменное электрическое поле с частотой 1 - 10 МГц. Это соответствует β -дисперсии.
При α- дисперсии происходит поляризация целых клеток в результате диффузии ионов, что занимает относительно большое время, и α- дисперсии соответствует область низких частот (0,1 - 10 кГц). В этой области емкостное сопротивление мембран очень велико, поэтому преобладают токи, огибающие клетки и протекающие через окружающие клетки растворы электролитов.
Итак, области а α-, β- и γ-дисперсии импеданса объясняются тем, что с увеличением частоты переменного электрического поля в явлении поляризации участвуют разные структуры биологических тканей: при низких частотах на изменение поля реагируют все структуры (α-дисперсия), с увеличением частоты реагируют крупные молекулы-диполи органических соединений и молекулы воды ((β-дисперсия), а при самых больших частотах реагируют только молекулы воды (γ-дисперсия). Во всех случаях имеет место электронная поляризация. С увеличением частоты электрического тока (электрического поля) все меньше структур будет реагировать на изменение этого поля и меньше будет значение поляризованности Рem. Отсюда, согласно (39), с увеличением частоты будет уменьшаться диэлектрическая проницаемость ε, а следовательно, и электроемкость С, а это приведет к увеличению емкостного сопротивления ХС и импеданса Z. Следовательно, на фоне общего хода зависимости Z = f(ω) появляются области с меньшим убыванием Z при возрастании частоты (области α-, β- и γ-дисперсии).
Частотная зависимость импеданса позволяет оценить жизнеспособность тканей организма, что важно знать для пересадки (трансплантации) тканей и органов. Различие в частотных зависимостях импеданса получается и в случаях здоровой и больной ткани.
Импеданс тканей и органов зависит также и от их физиологического состояния. Так, при кровенаполнении сосудов импеданс изменяется в зависимости от состояния сердечно-сосудистой деятельности.