Исследовать динамику экономического показателя на основе анализа одномерного временного ряда




В течение девяти последовательных недель фиксировался спрос Y(t) (млн. р.) на кредитные ресурсы финансовой компании. Временной ряд Y(t) этого показателя приведен ниже в таблице:

 

t yt
   
   
   
   
   
   
   
   
   

 

Требуется:

1) Проверить наличие аномальных наблюдений.

2) Построить линейную модель , параметры которой оценить МНК ( - расчетные, смоделированные значения временного ряда).

3) Построить адаптивную модель Брауна с параметром сглаживания a= 0,4 и a= 0,7; выбрать лучшее значение параметра сглаживания α.

4) Оценить адекватность построенных моделей, используя свойства независимости остаточной компоненты, случайности и соответствия нормальному закону распределения (при использовании R/S-критерия взять табулированные границы 2,7-3,7).

5) Оценить точность моделей на основе использования средней относительной ошибки аппроксимации.

6) По двум построенным моделям осуществить прогноз спроса на следующие две недели (доверительный интервал прогноза рассчитать при доверительной вероятности р = 70%).

7) Фактические значения показателя, результаты моделирования и прогнозирования представить графически.

Вычисления провести с одним знаком в дробной части. Основные промежуточные результаты вычислений представить в таблицах (при использовании компьютера представить соответствующие листинги с комментариями).

Решение. 1. Для выявления аномальных наблюдений используем метод Ирвина. Для каждого уровня временного ряда рассчитывается статистика

 

,

 

где - стандартное отклонение уровней ряда.

Стандартное отклонение определяется с помощью встроенной функции EXCEL «СТАНДОТКЛОН»: Sy =7,29 млн. руб. Расчет значений t для всех уровней ряда, начиная со второго. Табличное значение критерия Ирвина для уровня значимости a=0,05 и длины временного ряда n =9 составляет l=1,5. Видно, что ни одно из значений l t не превышает критического значения, что свидетельствует об отсутствии аномальных наблюдений.

2. Линейную трендовую модель строим с помощью надстройки EXCEL «Анализ данных… Регрессия »:

Уравнение линейного тренда имеет вид (см. «Коэффициенты »):


.

 

Угловой коэффициент показывает, что спрос на кредитные ресурсы финансовой компании за одну неделю возрастает в среднем на 2,58 млн. руб.

Коэффициент детерминации уравнения R 2»0,941 превышает критическое значение для a=0,05 и n =9, что свидетельствует о статистической значимости линейной модели и наличии устойчивого линейного тренда во временном ряду. Само значение R 2 показывает, что изменение спроса во времени на 94,1 % описывается линейной моделью.

3. Построение адаптивной модели Брауна. Модель Брауна строится в несколько этапов.

1) По первым пяти точкам временного ряда методом наименьших квадратов оцениваем параметры а 0 и а 1 линейной модели

 

.

 

Получаем начальные значения параметров модели Брауна и , которые соответствуют моменту времени t =0 (определены с помощью функций EXCEL «ОТРЕЗОК » и «НАКЛОН » соответственно.

 

 

2) Находим прогноз на первый шаг (t =1):

.

3) Определяем величину отклонения расчетного значения от фактического:

.

4) Скорректируем параметры модели для параметра сглаживания =0,4 по формулам:

 

;

,

 

где - коэффициент дисконтирования данных, отражающий степень доверия к более поздним наблюдениям; - параметр сглаживания ( = ); - отклонение (остаточная компонента).

По условию =0,4, следовательно значение b равно:

.

Получим:

;

,

5) По модели со скорректированными параметрами a 0( t ) и a 1( t ) находим прогноз на следующий момент времени:

 

.

 

Для t =2:

.

6) Возвращаемся к пункту 3 и повторяем вычисления до конца временного ряда.

7) Вычислим среднюю относительную ошибку для данного параметра сглаживания:

 


8) Корректировка параметров модели для =0,7 и =0,3:

;

9) Средняя относительная ошибка для данного параметра:

Таким образом, судя по средней относительной ошибке при =0,4 и =0,7, в первом случае =4,1%, а во втором случае =5,0%. Следовательно, =0,4 – лучшее значение параметра сглаживания, т.к. средняя относительная ошибка меньше.

4. Оценим адекватность линейной модели. Рассчитанные по модели значения спроса , остатки и их график были получены вEXCEL одновременно с построением модели (см. «ВЫВОД ОСТАТКА » в прил. 4).

Случайность остаточной компоненты проверим по критерию поворотных точек. В нашем случае общее число поворотных точек в ряду остатков составляет p =4.

Критическое число поворотных точек для a=0,05 и n =9 определяется по формуле

 

 

Так как , остатки признаются случайными.

Проверим независимость остатков с помощью критерияДарбина–Уотсона (отсутствие автокорреляции).Для расчета d ‑статистики используется выражение, составленное из встроенных функций EXCEL:

d ‑статистика имеет значение (см. прил. 4):

;

;

Критические значения d ‑статистики для a=0,05 и n =9 составляют: d 1=0,82; d 2=1,32. Так как выполняется условие

,

то нет достаточных оснований сделать тот или иной вывод о выполнении свойства независимости. Проверим независимость остатков по коэффициенту автокорреляции первого порядка, который равен (см. прил. 4):

.

Для расчета коэффициента автокорреляции использовалось выражение, составленное из встроенных функций EXCEL:

Критическое значение коэффициента автокорреляции для a=0,05 и n =9 составляет 0,666. Так как коэффициент автокорреляции не превышает по абсолютной величине критическое значение, то это указывает на отсутствие автокорреляции в ряде динамики. Следовательно, модель по этому критерию адекватна.

Проверим равенство нулю математического ожидания уровней ряда остатков. Среднее значение остатков равно нулю: (определено с помощью встроенной функции «СРЗНАЧ »; см. прил. 4). Поэтому гипотеза о равенстве математического ожидания значений остаточного ряда нулю выполняется.

Нормальный закон распределения остатков проверяем с помощью R / S -критерия, определяемого по формуле


,

 

где e max; e min - наибольший и наименьший остатки соответственно (определялись с помощью встроенных функций «МАКС » и «МИН »); - стандартное отклонение ряда остатков (определено с помощью встроенной функции «СТАНДОТКЛОН »; см. прил. 4).

Критические границы R/S -критерия для a=0,05 и n =9 имеют значения: (R / S)1=2,7 и (R / S)2=3,7. Так как R / S -критерий попадает в интервал между критическими границами, то ряд остатков признается соответствующим нормальному закону распределения вероятностей. Модель по этому критерию адекватна.

Таким образом, выполняются все пункты проверки адекватности модели: модель признается адекватной исследуемому процессу.

Оценим адекватность построенной модели Брауна: с параметром сглаживания (см. таблица 2):

 

Таблица 2 - Анализ ряда остатков модели Брауна

Проверяемое свойство Используемые статистики Граница Вывод
наименование значение нижняя верхняя
Независимость d –критерий Дарбина-Уотсона r(1) -коэффициент автокорреляции d =2,79 -0,44 0,82 1,32   0,666 Нельзя сделать вывод по этому критерию r(1) <0,666 адекватна
Случайность Критерий пиков (поворотных точек) 6>2   адекватна
Нормальность RS-критерий R/S= 2,7 3,7 неадекватна
Мат.ожидание≈0 t-статистика Стьюдента   2,306 адекватна
Вывод: модель статистически неадекватна

 

5. Оценим точность линейной модели на основе использования средней относительной ошибки аппроксимации.

Среднюю относительную ошибку аппроксимации находим по формуле:

 

%

 

Значение E отн показывает, что предсказанные моделью значения спроса на кредитные ресурсы отличаются от фактических значений в среднем на 2,57 %. Модель имеет хорошую точность.

Оценим точность модели Брауна с параметром сглаживания :

Модель Брауна также имеет хорошую точность, однако она несколько ниже, чем у линейной трендовой модели.

6. Строим точечный и интервальный прогнозы спроса на 1 и 2 недели вперед для линейной модели:

Прогноз на 1 неделю вперед (период упреждения k =1):

1) Точечный прогноз :

млн. руб.

Среднее прогнозируемое значение спроса равно 64,5 млн. руб.

2) Интервальный прогноз


 

с надежностью (доверительной вероятностью) g=0,7. необходимые расчеты приведены в таблице 3:

млн. руб.,

где t таб=1,083 - табличное значение t -критерия Стьюдента для доверительной вероятности g=0,7.

С вероятностью 70 % фактическое значение спроса на кредитные ресурсы будет находиться в интервале от 62,13 до 66,87 млн. руб.

Таблица 3

         
         
  t yt  
         
         
         
         
         
         
         
         
         
Среднее   -    
         
         

Прогноз на 2 недели вперед (период упреждения k =2):

1) Точечный прогноз:

млн. руб.

Среднее прогнозируемое значение спроса равно 66,8 млн. руб.

2) Интервальный прогноз с надежностью g=0,7:

млн. руб.,

С вероятностью 70 % фактическое значение спроса на кредитные ресурсы будет находиться в интервале от 64,29 до 69,31 млн. руб.

Построим прогноз для модели Брауна на следующие 2 недели. Параметры модели, полученные для последнего уровня временного ряда (т. е. для t = n =9), используются для построения прогноза спроса по формуле:

.

Прогноз на 1 неделю вперед (период упреждения k =1):

млн. руб.

С вероятностью 70 % значение спроса на кредитные ресурсы будет находиться в интервале от 63,213 до 70,361 млн. руб.

Прогноз на 2 недели вперед (период упреждения k =2):

млн. руб.

Значение спроса на кредитные ресурсы будет находиться в интервале от 65,603 до 73,167 млн. руб.

7. График временного ряда спроса строим с помощью надстройки «Диаграмма » EXCEL. Предварительно выделяется блок ячеек «t » и «yt » вместе с заголовками, а затем выбирается пункт меню «Вставка» «Диаграмма… »:

Далее строим линию линейного тренда (меню «Диаграмма» ® «Добавить линию тренда… » ® «Линейная »), и устанавливаем «Прогноз » вперед на 2 единицы и назад на 1 единицу, а также вывод на диаграмме уравнения тренда и коэффициента детерминации R 2.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: