Прикладной программный продукт ТП Excel фирмы Microsoft содержит в своем составе достаточно мощное средство для решения задач оптимизации с учетом ограничений.




Автор: Вардомацкая Елена Юрьевна, ст. преподаватель кафедры математики и информационных технологий УО "Витебский государственный технологический университет".

Это так называемая утилита “Поиск решения” (см. рис. 1). Прокомментируем некоторые аспекты работы с этой утилитой.

 

Рис.1– Окно утилиты Поиск решения

Искомые переменные - ячейки рабочего листа Excel - называются регулируемыми ячейками.

Целевая функция F(x1, x2, …, xn), называемая иногда просто целью, должна задаваться в виде формулы в ячейке рабочего листа. Эта формула может содержать функции, определенные пользователем, и должна зависеть (ссылаться) от регулируемых ячеек. В момент постановки задачи определяется, что делать с целевой функцией. Возможен выбор одного из вариантов:

Ø найти максимум целевой функции F(x1, x2, …, xn);

Ø найти минимум целевой функции F(x1, x2, …, xn);

Ø добиться того, чтобы целевая функция F(x1, x2, …, xn) имела фиксированное значение: F(x1, x2, …, xn) = a (см. рис. 2).

 

Рис.2 – Определение целевой функции в окне утилиты «Поиск решения»

Функции G(x1, x2, …, xn) называются ограничениями. Их можно задать как в виде равенств, так и неравенств.

На регулируемые ячейки (искомые параметры – x1, x2, …, xn) можно наложить дополнительные ограничения: неотрицательности и/или целочисленности, тогда решение ищется в области положительных и/или целых чисел (см. рис.3).

Рис. 3 – Определение ограничений

Под эту постановку попадает самый широкий круг задач оптимизации, в том числе решение различных уравнений и систем уравнений, задачи линейного (см. выше) и нелинейного программирования.

Пример. Решить линейную оптимизационную задачу.

Фирма производит три вида продукции (A, B, C), для выпуска каждого требуется определенное время обработки на четырех устройствах.

Вид продукции Время обработки, ч. Прибыль, у.е.
I II III IV
A          
B          
C          

Максимально допустимое время работы на устройствах I, II, III, IV составляет соответственно 84, 42, 21 и 42 часа.

Требуется рассчитать план производства, обеспечивающий максимальную прибыль.

Решение.

Составим ЭММ задачи.

Разместим таблицу с исходными данными в ячейrах A1:G9 Рабочего листа Excel как показано ниже

и выполним необходимые предварительные расчеты (см. рис.5)

Рис. 5 – Исходные данные оптимизационной задачи

Отыскать решение задачи, приняв следующие условия

1. Общая итоговая прибыль (F6) => max

 

2. Количество изделий (G3:G5)- целое и неотрицательное число

 

3. Баланс времени по каждому устройству (B7:E7) <= (B9:E9)

 

4. Изменению подлежат: количество изделий (G3:G5)

 

Окончательный вид формулировки задачи представлен на рис. 6 Рис.6 – Формулировка задачи в терминах рабочего листа Excel

Итоговый результат представлен на рис.7:

Рис.7 – Результат оптимизации

Анализ решения показывает, что все без исключения требования задачи оптимизации выполнены. При этом видно, что для получения максимальной прибыли нецелесообразно выпускать изделие C.

Результаты расчетов представлены в отчете по результатам (рис.8):

Рис. 8 – Отчет по результатам

Утилита «Поиск решения» может использоваться и для решения более сложных задач оптимизации.

 

 


Лекция 8



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-02 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: