Важное свойство электролита - его вязкость в расплавленном состоянии от вязкости электролита зависят такие процессы, как усреднение концентрации глинозема, скорость отстаивания электролита от капелек металла, удаление пузырьков анодного газа из междуполюсного зазора и т.д. Повышенную вязкость следует считать недостатком электролита того или иного состава. Вязкость резко снижается с ростом температуры перегрева электролита, однако такое снижение вязкости нельзя считать приемлемым, т.к. оно сопровождается неблагоприятными последствиями, характерными для перегретых электролитов. Более приемлем вариант снижения вязкости электролита путём корректировки его состава.
Вязкие электролиты удерживают повышенное количество частиц взвешенного металла («металлический туман») и пузырьков анодного газа, их удельная электропроводность соответственно снижается. Аналогичным образом воздействует углерод, попадающий в электролит в виде пены и плохо отделяющийся из вязких электролитов.
Отметим также, что наибольшая вязкость при температуре электролиза (≈= 2-3 сП) имеет место для чистого криолита при к.о. 3,0. При корректировке состава электролита в сторону избытка или недостатке AlF 3 вязкость расплава довольно резко снижается.
В мировой практике многие годы сохраняется устойчивая тенденция к снижению криолитового отношения и ведению технологии электролиза на все более кислых электролитах. Избыточное количество фтористого алюминия в электролите повышается до 8-14% (по массе), что соответствует к.о. = 2,15-2,45. Суммарным результатом «закисления» электролитов можно считать повышение выхода по току и снижение удельного расхода электроэнергии на тонну произведенного алюминия.
|
В то же время для работы на кислых электролитах необходимо выполнить целый ряд предварительных условий. К ним можно отнести: применение систем автоматического питания глинозёмом, использование «песчаного» глинозема, работу на низких зеркалах металла, применение «сухой» очистки газов, а также решение проблем по упорядочению магнитных и газодинамических процессов в электролизерах, особенно при увеличении их единичной мощности.
Электролит - это среда, в которой протекают основные электрохимические превращения в алюминиевой ванне. К составу электролита выдвигается целый ряд обязательных условий.
Во-первых, электролит должен растворять необходимое количество глинозема, достаточное для ведения электролиза как минимум до поступления новой порции глинозема; все добавки понижают как растворимость глинозёма, так и скорость его растворения, что нежелательно, т.к. способствует образованию осадков;
Во-вторых, электролит должен быть электропроводен, так как в узком зазоре междуполюсного пространства не должно быть большого падения напряжения и соответственно выделения избыточного количества тепловой энергии; в противном случае возможен перегрев электролита и снижение выхода по току.
В-третьих, температура плавления электролита должна быть относительно невысокой, что снизит тепловые потери и энергетические затраты на электролиз.
В-четвертых, состав электролита должен быть стабилен, а потери его за счет разложения и перехода части материала в газовую фазу минимальными.
|
В-пятых, электролит должен отвечать целому ряду дополнительных требований, а именно: иметь низкую вязкость, достаточное межфазовое натяжение на границе с расплавленным алюминием, не пропитывать и не разрушать футеровку электролизера.
В наибольшей степени этим требованиям отвечает расплавленный криолит 3NаF·АlFз, представляющий собой основной компонент электролита современного электролизера. Путем корректировки его состава по соотношению NaF:AlF3, а также введением ряда модифицирующих добавок технологам удается достичь оптимального состава электролита и получить ожидаемый результат при электролизе. Несмотря на многолетние усилия исследователей найти какой-либо подходящей замены криолиту не удалось.
В химически чистом криолите молярное отношение NaF:AIF3 равно трем, а само оно носит условное название криолитового отношения (к,о.). Электролит на основе химически чистого криолита при к.о., равным 3, называется нейтральным. Если к.о. более 3, Т.е. имеется избыток NaF, то такой электролит называется щелочным. Напротив, электролит с избытком фтористого алюминия и к.о. ниже 3 называют кислым.
Добиться получения электролита с оптимальными свойствами можно вводя в состав электролита избыток AlF 3, этим можно улучшить целый ряд его свойств. Прежде всего, избыток фтористого алюминия снижает растворимость в электролите алюминия, а это предотвращает окисление его анодными газами и способствует повышению выхода по току, Растворимость алюминия в чистом криолите составляет 0,08%, а в электролите с к.о. = 2,1 предельная концентрация снижается до 0,035%, Т.е. более чем в 2 раза.
|
Если температура плавления чистого криолита равна 1010°C, то за счет снижения к.о. до 2,2-2,4, а также одновременного введения других добавок и растворенного глинозема это значение удается снизить до 930-9450С, а электролиз вести при температуре 9509550С. При этом важна не только абсолютная температура начала кристаллизации (или плавления) электролита, но и величина перегрева, так как растворимость металла быстро снижается по мере уменьшения перегрева электролита. Под перегревом понимается разница между реальной температурой электролита в ванне и температурой его кристаллизации. Если удается вести электролиз с перегревом электролита относительно начала кристаллизации на 8-100С, то это дает существенное повышение выхода по току.
Плотность кислых электролитов снижается по мере роста содержания в них АlFз, что создает лучшие условия для разделения жидкого алюминия и электролита. Так, если плотность жидкого алюминия составляет около 2,3 г/см3, а чистого криолита - 2,1 г/см3, то разница в удёльных весах равна 0,2 г/см3. Со снижением к.о. до 2,2 эта разница возрастает до - 0,26 г/см3.
Добавка фтористого алюминия, также как и ряда других фторидов, повышает межфазовое натяжение на границе металл-электролит, обеспечивая тем самым более надежное разделение двух жидких фаз.
Однако избыток фтористого алюминия в электролите имеет и заметное негативное влияние. В кислых электролитах снижается как абсолютная растворимость глинозема, так и скорость этого растворения, что приходится компенсировать организацией более частой подпитки электролизеров и использованием специальных сортов глинозема с активированной структурой. Так, если в чистом криолите растворимость А12Оз равна 12,4% (по массе), то при к.о. = 2,2 она снижается на 1,5%.
Аналогичным образом изменяется и электропроводность электролита. При таком же снижении криолитового отношения электропроводность уменьшается с 2,87 до 2,25 Ом·1см·1, поэтому для предотвращения перегрева электролита в узкой зоне междуполюсного пространства значение МПР приходится уменьшать, компенсируя общий рост омического сопротивления.
В процесс е электролиза под влиянием высоких температур происходит частичное разрушение структуры криолита с образованием летучих веществ. Это подтверждается тем обстоятельством, что основной составляющей парогазовой фазы над поверхностью электролита является соединение NаF·АIFз, в котором содержание AIF 3 значительно больше, чем в электролите.
В результате потерь при электролизе преимущественно фтористого алюминия криолитовое отношение электролита постепенно возрастает. Часть улетучившихся фтористых солей удается уловить, регенерировать в системе газоочистки и вернуть в электролизеры, однако потери AIF3 в количестве 12-25 кг из расчета производства 1 т алюминия необходимо восполнять свежим фтористым алюминием.
Следует отметить, что из-за большой летучести фтористого алюминия вводить его в электролит нужно таким образом, чтобы избежать прямого попадания в расплав.