Контрольные вопросы:. Пояснения к работе




1. Собрать поочередно электрические схемы в соответствии с рис. 2.4; 2.6; 2.7 и произвести измерения величин токов и напряжений. В качестве приемников энергии использовать проволочные реостаты, одни и те же для всех трех схем, не изменяя их сопротивлений, при этом ползунки реостатов установить в положения, соответствующие максимальным значениям их сопротивлений.

2. Согласно измеренным величинам токов и напряжений, вычислить сопротивления каждого реостата и эквивалентное сопротивление каждой цепи относительно зажимов источников энергии. Полученные результаты свести в табл. 2.1.

3. Вычислить, исходя из величин r1, r2, r3 эквивалентное сопротивление rэкв каждой из цепей. Сравнить полученные результаты с опытами.

4. Вычислить аналитическую силу токов в приемниках для всех трех схем, считая известными сопротивления приемников и напряжение источника питания. Полученные токи сравнить с измеренными.

5. Сделать выводы по работе.

Таблица 2.1

Соедине- ние Измерения Вычисления
U В U1 В U2 В U3 В I А I1 А I2 А I3 А rэкв Ом r1 Ом r2 Ом r3 Ом
Последова-тельное                        
Параллель-ное                        
Смешан- ное                        

 

Контрольные вопросы:

1. Какое соединение резисторов называется последовательным?

2. Чему равно эквивалентное сопротивление цепи с последовательно включенными резисторами?

3. При каких условиях применяется последовательное включение резисторов (приемников)?

4. Какое соединение резисторов называется параллельным?

5. Как определить для параллельного соединения эквивалентное сопротивление и эквивалентную проводимость?

6. При каких условиях можно включать параллельно приемники электрической энергии?

7. Почему схема параллельного включения приемников является основной?

8. Какое соединение резисторов называется смешанным?

9. Как определить для смешанного соединения эквивалентное сопротивление?


Работа 3. Цепь переменного синусоидального тока с последовательным соединением катушки и конденсатора. Резонанс напряжений.

 

Цель работы: изучить явления, происходящие в неразветвленных цепях переменного синусоидального тока при изменении соотношений величин индуктивности и емкости; ознакомиться с явлением резонанса напряжений.

Пояснения к работе

Рассмотрим процессы в цепи с последовательным соединением катушки и конденсатора (рис. 3.1).

 

 


Рис.3.1. Схема цепи с последовательным соединением

катушки и конденсатора

 

Реальная катушка обладает индуктивным сопротивлением xL=wL и активным сопротивлением r = r , где w – угловая частота переменного тока, L – индуктивность катушки, r – удельное электрическое сопротивление провода катушки, l – длина провода, S – площадь поперечного сечения провода. При прохождении тока через катушку, электрическая энергия расходуется на нагревание провода катушки. Скорость преобразования электрической энергии в тепловую учитывается с помощью величины, называемой активной мощностью P = rI2. Измерив ток и активную мощность катушки, можно вычислить активное сопротивление катушки . Его можно определить также, пропуская через катушку постоянный ток. В цепи постоянного тока катушка обладает только активным сопротивлением, так как угловая частота w=2p¦=0 и xL = wL=0. Поэтому , где U – постоянное напряжение, приложенное к катушке, а I – сила постоянного тока, протекающего через катушку.

 

Эквивалентная схема замещения катушки может быть представлена в виде последовательного соединения резистивного и индуктивного идеальных элементов (рис. 3.2).

 
 

 

 


Рис.3.2. Эквивалентная схема замещения катушки

 

Напряжение на катушке Uк можно разложить на две составляющие – активную Uак и индуктивную UL Векторная диаграмма напряжений и тока для катушки приведена на рис. 3.3.

Напряжение Uк можно измерить на выводах катушки с помощью вольтметра, ток I – с помощью амперметра. Угол сдвига фаз между током и напряжением катушки jк можно определить из формулы Pк = Uк I cosjк, если измерить с помощью ваттметра активную мощность катушки Pк. Составляющие напряжения Uк, UL и Uак можно вычислить из треугольника напряжений ОАВ (рис.3.3): Uак=Uкcosjк или определить графически, опустив перпендикуляр из конца вектора Uк (точка А на рис. 3.3) на линию вектора I.

 


Рис.3.3. Векторная диаграмма напряжения и тока для катушки

 

Конденсатор в цепи переменного тока обладает емкостным сопротивлением , где C – емкость конденсатора. Следует указать, что в конденсаторе также имеются активные потери энергии в диэлектрике. Однако величина этих потерь настолько мала, что ими можно пренебречь. На схеме замещения конденсатор можно представит в виде идеального емкостного элемента с параметром С, равным емкости конденсатора.

Последовательное соединение катушки и конденсатора изображено в виде схемы замещения на рис. 3.4.

 
 

 


Рис.3.4. Схема замещения цепи с последовательным

соединением катушки и коденсатора

 

При подключении такой цепи под напряжение U в ней возникает ток I.

Вектор активной составляющей напряжений на катушке будет совпадать по направлению с вектором тока İ (рис.3.5), так как соответствующие синусоиды мгновенных значений совпадают по фазе:

i = Imsinwt и U = i r =Im r sinwt. (3.1)

Вектор индуктивного напряжения =İхL опережает по фазе вектор тока İ на (рис. 3.6), так как синусоида напряжения UL на индуктивности опережает по фазе синусоиду тока i на .

UL = L = Imwt sin(wt + 90˚). (3.2)

Вектор емкостного напряжения =İхC отстает по фазе от вектора тока İ на (рис. 3.7), так как синусоида напряжения на емкости при нулевых начальных условиях отстает от синусоиды тока i на .

. (3.3)

 

 
 

 


Рис.3.5. Векторная диаграмма напряжения и тока

при активной нагрузке цепи.

 
 

 

 


Рис. 3.6. Векторная диаграмма напряжения и тока

при индуктивной нагрузке цепи

 

 

 


Рис. 3.7. Векторная диаграмма напряжения и тока

при емкостной нагрузке цепи

Для рассматриваемой цепи уравнений по второму закону Кирхгофа имеет следующий вид:

, (3.4)

где

Согласно уравнению (3.4) и рис.3.5 – 3.7, векторная диаграмма напряжений цепи (рис.3.4) будет иметь вид, показанный на рис. 3.8, где вектор совпадает по фазе с вектором İ, а вектор опережает по фазе на 90˚ вектор тока İ. Сумма векторов и дает вектор напряжения катушки:

,

Опережающий по фазе ток на угол jк.

Вектор отстает по фазе на 90˚ от вектора тока İ. Сумма векторов , , дает вектор напряжения сети , опережающий ток по фазе на угол j.

Разделив и умножив стороны треугольника (рис.3.8) на величину тока İ, получим подобные треугольники сопротивлений и мощностей (рис.3.9, 3.10).

Из треугольника сопротивлений (см. рис.3.9) найдем полное сопротивление Z и cosj цепи

Z= . (3.5)

cosj = . (3.6)

 

 

Рис. 3.8. Векторная диаграмма тока и напряжений

для цепи с последовательным соединением

элементов r, L, C при xL>xC

 
 


Рис. 3.9. Треугольник сопротивлений для цепи с последовательным

соединением элементов r, L, C.

 

Из векторной диаграммы напряжений (см.рис.3.8) получим формулу тока I, которая является выражением закон Ома для последовательной цепи переменного тока:

. (3.7)

Из диаграммы мощностей (рис.3.10) получим соотношение между полной S, активной P и реактивными QL и Qc мощностями

. (3.8)

 
 

 


Рис. 3.10. Треугольник мощностей для цепи с последовательным

соединением элементов r, L, C.

 

Изменяя величину емкости в цепи, можно изменять соотношение между емкостными и индуктивными сопротивлениями и напряжениями:

и UL=I ω L

и получать различные значения угла сдвига φ между вектором тока İ и вектора напряжения сети согласно уравнению (3.6). Если величина L> имеем: ωL> и UL>UC, т.е. в цепи преобладает индуктивное сопротивление xL и напряжение , поэтому вектор тока İ отстает по фазе от вектора напряжение сети на угол φ (см.рис. 3.8).

Если L< , наоборот, преобладает емкостное сопротивление xC и напряжение , поэтому вектор тока İ опережает по фазе вектор напряжения сети (рис. 3.11).

 

 


Рис. 3.11. Векторная диаграмма тока и напряжений

для цепи с последовательным соединением

элементов r, L, C при xL<xC

При величине индуктивности

(3.9)

индуктивное сопротивление будет равно емкостному:

(3.10)

а, следовательно, будут равны между собою индуктивное и емкостное напряжения (рис. 3.12).

IxL=IxС; UL=UC. (3.11)

Мы получим резонанс напряжения, т.е. полную взаимную компенсацию индуктивного и емкостного напряжений:

При резонансе напряжений угол сдвига φ=0, следовательно:

cos φ=1 (3.12)

Вектор напряжения (рис. 3.12).

Полное сопротивление цепи при резонансе zрез принимает минимальное значение zрез= r, так как xL-xC=0, а, следовательно, ток при резонансе Iрез и активная мощность принимают максимальные значения:

,

(3.13)

 
 

 


Рис. 3.12. Векторная диаграмма тока и напряжений

при резонансе напряжений (xL= xC)

 

Реактивная мощность равна нулю

Q = I(UL-UC)= 0; QL-QC=0. (3.14)

Индуктивное UL и емкостное UC напряжения в раз больше напряжения сети U:

Поэтому резонанс напряжений может оказаться опасным для установки. При испытании таких цепей требуется особая осторожность. Явление резонанса напряжений, т.е. взаимной компенсации реактивных напряжений (UL-UC= 0), а последовательно, и реактивных мощностей (QL-QC) объясняется тем, что мгновенные значения напряжений на индуктивности UL и на емкости UC в любой момент времени равны и имеют противоположные знаки. Отсюда следует, что если, например, индуктивность берет энергию из сети для создания магнитного поля, то в этот момент конденсатор, разряжаясь, отдает энергию в сеть.

Происходит взаимная компенсация энергии, потребляемой ими из сети.

Таким образом, при резонансе полная энергия, потребляемая из сети, расходуется только на нагревание резисторного элемента цепи.

Кривые зависимости Z сопротивления цепи от величины емкости С показаны на рис. 3.13. При величина Z минимальна и равна Zрез= r.

На рис. 3.13 показана также кривая зависимости тока I и cosφ от величины емкости C. При C= Cрез ток I имеет максимальное значение , при всех других значениях емкости

 

 

 
 

 


Рис. 3.13. Графика зависимости полного сопротивления цепи Z

тока I и коэффициента мощности cosφ от емкости,

(при L= const)

Из выражения (3.10) видно, что резонанс напряжений в цепи может быть получен изменением индуктивности L или емкости C при неизменной частоте сети f или изменением частоты сети при заданных постоянных L и C.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-02 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: