Уравнение, содержащее переменную под знаком логарифма, называется логарифмическим.
Чтобы решить простейшие логарифмические уравнения вида
, нужно: 1) решить уравнение
;
2) из найденных корней отобрать те, которые удовлетворяют неравенствам
и
остальные корни уравнения
являются посторонними для уравнения
.
Определение логарифма и простейшие свойства логарифмов и степеней в разделе «Задания В11:вычисления значений выражений, включающих степени, радикалы, логарифмы и тригонометрические функции» (стр.92).
Пример 25.
В7.Найдите корень уравнения
Решение:
Перейдем от заданного уравнения к уравнению х + 6 = 4х – 9, откуда х - 4х = – 9 – 6,
- 3х = – 15, х = 5. Проверку найденного значения х выполним с помощью неравенств и . Число 5 этим неравенствам удовлетворяет. Значит, 5 –корень данного уравнения.
В бланк ответов: В7
|
Пример 26.
В7.Найдите корень уравнения
Решение:
Используя свойства и , получим
, .
Перейдем от полученного уравнения к уравнению 5 + х = 4(4 - х), откуда 5+ х =
= 16 – 4х, 5х = 11, х = 2,2.
Проверку найденного значения х выполним с помощью неравенств 5+ и . Число 2,2 этим неравенствам удовлетворяет. Значит, 2,2 –корень данного уравнения.
В бланк ответов: В7
|
Пример 27.
В7.Найдите корень уравнения .
Решение:
Перейдем от заданного уравнения к уравнению 8 - х = 5, откуда х = 3. Проверку найденного значения х выполним с помощью неравенства . Число 3 этому неравенству удовлетворяет. Значит, 3 –корень данного уравнения.
В бланк ответов: В7 |
Уравнения, примеры 24-35
Пример 28.
В7.Найдите корень уравнения
Решение:
Используя свойство логарифмов , получим Перейдем от полученного уравнения к уравнению 8 - 5х = 32, откуда - 5х = 9 – 8, -5х = 1, х = -0,2. Проверку найденного значения х выполним с помощью неравенства . Число -0,2 этому неравенству удовлетворяет. Значит, -0,2 –корень данного уравнения.
В бланк ответов: В7 |
Простейшее логарифмическое уравнение
имеет одно решение. Из определения логарифма
сразу следует, что
является таким решением.
Пример 29.
В7.Найдите корень уравнения log (х-5) = 2.
Решение:
Используя определение логарифма ,получим
В бланк ответов: В7
|
Пример 30.
В7.Найдите корень уравнения log = 2.
Решение:
Используя определение логарифма ,получим
В бланк ответов: В7
|
Пример 31.
В7.Найдите корень уравнения log (8- х) = 2.
Решение:
Используя определение логарифма ,получим
В бланк ответов: В7
|
Пример 32.
В7. Найдите корень уравнения log (6-х) = -2.
Решение:
Используя определение логарифма ,получим
В бланк ответов: В7
|
Уравнения, примеры 24-35
Содержание
Тригонометрические уравнения
Простейшие тригонометрические уравнения cos x = a, sin x = a, tg x = a, ctg x = a
имеют бесконечно много корней.
Решения уравнений по общим формулам:
1) cos x = a, где
, находят по формуле
;
2) sin x = a, где
, находят по формуле
;
3) tg x = a находят по формуле
;
4) ctg x = a находят по формуле
.
В некоторых случаях удобнее пользоваться частными формулами:
5) sin x = 0,
6) sin x = 1,
7) sin x = -1,
8) cos x = 0,
9) cos x = 1,
10) cos x = -1,
11) tg x = 0,
12) ctg x =0,
|
Таблица некоторых значений тригонометрических функций дана в разделе «Задания В8: вычисление элементов прямоугольного треугольника» (стр. 63).
Пример 33.
В7. Найдите корень уравнения .В ответе запишите наибольший отрицательный корень. Ответ округлите до сотых.
Решение:
Воспользовавшись формулой(1),получим: .
Так как ,то получаем ; .
Очевидно, что при п = 0 получим наименьший положительный и наибольший отрицательный корни: , ,
Отсюда наибольший отрицательный корень -1,05.
В бланк ответов: В7
|
Уравнения, примеры 24-35
Содержание
Пример 34.
В7. Найдите корень уравнения .В ответе запишите наибольший отрицательный корень. Ответ округлите до десятых.
Решение:
Воспользовавшись формулой(3),получим: .
Так как Очевидно, что при п = -1 получим наибольший отрицательный корень, т.е. х
|
Пример 35.
В7. Найдите корень уравнения .В ответе запишите наименьший положительный корень. Ответ округлите до десятых.
Решение:
Воспользовавшись формулой(2),получим: .
Так как ,то получаем , .
Очевидно, что при п = 0 получим наименьший положительный корень, т.е. х 0,785
0,8.
В бланк ответов: В7
|
Пример 36.
В7. Найдите корень уравнения .В ответе запишите наименьший положительный корень. Ответ округлите до сотых.
Решение:
Воспользовавшись формулой(4),получим: .
Так как ,то получаем ,
Очевидно, что при п = 1 получим наименьший положительный корень, т.е. х 2,0933…
2,09.
В бланк ответов: В7
|
В7. Найдите корень уравнения .В ответе запишите наименьший положительный корень. Ответ округлите до сотых.
Решение:
Воспользовавшись формулой(1),получим: .
Так как ,то получаем ; ; ; ; .
Очевидно, что при п = 0 получим наименьший положительный и наибольший отрицательный корни: х -0,9158...; 1,7008… - 0,92; 1,70.
Отсюда наименьший положительный корень 1,70.
В бланк ответов: В7 |
Пример 37.
Пример 38.
В7. Найдите корень уравнения .В ответе запишите наибольший отрицательный корень.
Решение:
Воспользовавшись формулой(1),получим: .
Так как ,то получаем ; .Умножая обе части уравнения на ,получим:
; ; .
При п = 1 х = 0; 0,5; при п = 0 х = -1,5; -1. Значит, наибольший отрицательный корень -1.
В бланк ответов: В7
|
Уравнения, примеры 36-40
Содержание
Пример 39.
В7. Найдите корень уравнения .В ответе запишите наименьший положительный корень. Ответ округлите до десятых.
Решение:
Преобразуем исходное уравнение: ; ; ; .
Воспользовавшись формулой(2),получим: ; .
Так как ,то получаем ; ;умножим обе части равенства на 2: ; .
Очевидно, что при п = 1 получим наименьший положительный корень: .
В бланк ответов: В7
|
Пример 40.
В7. Найдите корень уравнения .В ответе запишите наименьший положительный корень.Решение:
Воспользовавшись формулой(2),получим: .
Так как ,то получим ; .Умножая обе части уравнения на ,получим: ; ; .
При п = -2 ;
при п = -1 ;
при п = 0 . Значит, наименьший положительный корень 1,5.В бланк ответов: В7
|
Уравнения, примеры 36-40
Решение:
Перейдем от заданного уравнения к уравнению х + 6 = 4х – 9, откуда х - 4х = – 9 – 6,
- 3х = – 15, х = 5. Проверку найденного значения х выполним с помощью неравенств
и
. Число 5 этим неравенствам удовлетворяет. Значит, 5 –корень данного уравнения.
В бланк ответов: В7
Решение:
Используя свойства
и
, получим
,
.
Перейдем от полученного уравнения к уравнению 5 + х = 4(4 - х), откуда 5+ х =
= 16 – 4х, 5х = 11, х = 2,2.
Проверку найденного значения х выполним с помощью неравенств 5+
и
. Число 2,2 этим неравенствам удовлетворяет. Значит, 2,2 –корень данного уравнения.
В бланк ответов: В7
.
Решение:
Перейдем от заданного уравнения к уравнению 8 - х = 5, откуда х = 3. Проверку найденного значения х выполним с помощью неравенства
. Число 3 этому неравенству удовлетворяет. Значит, 3 –корень данного уравнения.
Решение:
Используя свойство логарифмов
, получим
Перейдем от полученного уравнения к уравнению 8 - 5х = 32, откуда - 5х = 9 – 8, -5х = 1, х = -0,2. Проверку найденного значения х выполним с помощью неравенства
. Число -0,2 этому неравенству удовлетворяет. Значит, -0,2 –корень данного уравнения.
(х-5) = 2.
Решение:
Используя определение логарифма
В бланк ответов: В7
= 2.
Решение:
Используя определение логарифма
,получим
В бланк ответов: В7
(8- х) = 2.
Решение:
Используя определение логарифма
В бланк ответов: В7
(6-х) = -2.
Решение:
Используя определение логарифма
В бланк ответов: В7
6) sin x = 1,
7) sin x = -1,
8) cos x = 0,
9) cos x = 1,
10) cos x = -1,
11) tg x = 0,
12) ctg x =0,
.В ответе запишите наибольший отрицательный корень. Ответ округлите до сотых.
Решение:
Воспользовавшись формулой(1),получим:
.
Так как
,то получаем
;
.
Очевидно, что при п = 0 получим наименьший положительный и наибольший отрицательный корни:
,
,
Отсюда наибольший отрицательный корень
-1,05.
В бланк ответов: В7
.В ответе запишите наибольший отрицательный корень. Ответ округлите до десятых.
Решение:
Воспользовавшись формулой(3),получим:
.
, то получаем
, 
-2,0933…
.В ответе запишите наименьший положительный корень. Ответ округлите до десятых.
Решение:
Воспользовавшись формулой(2),получим:
.
Так как
,то получаем
,
.
Очевидно, что при п = 0 получим наименьший положительный корень, т.е. х
.В ответе запишите наименьший положительный корень. Ответ округлите до сотых.
Решение:
Воспользовавшись формулой(4),получим:
.
Так как
,то получаем
,
Очевидно, что при п = 1 получим наименьший положительный корень, т.е. х
.В ответе запишите наименьший положительный корень. Ответ округлите до сотых.
Решение:
Воспользовавшись формулой(1),получим:
.
Так как
,то получаем
;
;
;
;
.
Очевидно, что при п = 0 получим наименьший положительный и наибольший отрицательный корни: х
.В ответе запишите наибольший отрицательный корень.
Решение:
Воспользовавшись формулой(1),получим:
.
Так как
,то получаем
;
.Умножая обе части уравнения на
,получим:
;
;
.
При п = 1 х = 0; 0,5; при п = 0 х = -1,5; -1. Значит, наибольший отрицательный корень -1.
В бланк ответов: В7
.В ответе запишите наименьший положительный корень. Ответ округлите до десятых.
Решение:
Преобразуем исходное уравнение:
;
;
;
.
Воспользовавшись формулой(2),получим:
;
.
Так как
;
;умножим обе части равенства на 2:
;
.
Очевидно, что при п = 1 получим наименьший положительный корень:
.
В бланк ответов: В7
.В ответе запишите наименьший положительный корень.Решение:
Воспользовавшись формулой(2),получим:
.
Так как
,то получим
;
.Умножая обе части уравнения на
,получим:
;
;
.
При п = -2
;
при п = -1
;
при п = 0
. Значит, наименьший положительный корень 1,5.В бланк ответов: В7