Операции над множествами.




Элементы высшей алгебры.

Основные понятия теории множеств.

 

Определение. Множеством М называется объединение в единое целое определенных различимых объектов а, которые называются элементами множества.

а Î М

Множество можно описать, указав какое – нибудь свойство, присущее всем элементам этого множества.

Множество, не содержащее элементов, называется пустым и обзначается Æ.

 

Определение. Если все элементы множества А являются также элементами множества В, то говорят, что множество А включается (содержится) в множестве В.

 

А

 

 

В

 

А Ì В

 

Определение. Если А Í В, то множество А называется подмножеством множества В, а если при этом А ¹ В, то множество А называется собственным подмножеством множества В и обозначается А Ì В.

 

Для трех множеств А, В, С справедливы следующие соотношения.

 

Связь между включением и равенством множеств устанавливается следующим соотношением:

Здесь знак Ù обозначает конъюнкцию (логическое “и”).

 

Операции над множествами.

 

Определение. Объединением множеств А и В называется множество С, элементы которого принадлежат хотя бы одному из множеств А и В.

Обозначается С = А È В.

 

 

А

В

 

 

Геометрическое изображение множеств в виде области на плоскости называется диаграммой Эйлера – Венна.

 

Определение. Пересечением множеств А и В называется множество С, элементы которого принадлежат каждому из множеств А и В.

Обозначение С = А Ç В.

 

 

А С В

 

Для множеств А, В и С справедливы следующие свойства:

 

А Ç А = А È А = А; A È B = B È A; A Ç B = B Ç A;

 

(A Ç B) Ç C = A Ç (B Ç C); (A È B) È C = A È (B È C);

 

A È (B Ç C) = (A È B) Ç (A È C); A Ç (B È C) = (A Ç B) È (A Ç C);

 

A È (A Ç B) = A; A Ç (A È B) = A;

 

Æ = А; A Ç Æ = Æ;

 

 

Определение. Разностью множеств А и В называется множество, состоящее из элементов множества А, не принадлежащих множеству В.

Обозначается С = А \ В.

 

 

А В

 

 

Определение. Симметрической разностью множеств А и В называется множество С, элементы которого принадлежат в точности одному из множеств А или В.

Обозначается А D В.

 

А D В = (A \ B) È (B \ A)

 

A B

 

Определение. СЕ называется дополнением множества А относительно множества Е, если А Í Е и CЕ = Е \ A.

 

 

A E

 

 

Для множеств А, В и С справедливы следующие соотношения:

 

A \ B Í A; A \ A = Æ; A \ (A \ B) = A Ç B;

 

A D B = B D A; A D B = (A È B) \ (A Ç B);

 

A \ (B È C) = (A \ B) Ç (A \ C); A \ (B Ç C) = (A \ B) È (A \ C);

 

(A È B) \ C = (A \ C) È (B \ C); (A Ç B) \ C = (A \ C) Ç (B \ C);

 

A \ (B \ C) = (A \ B) È (A Ç C); (A \ B) \ C = A \ (B È C);

 

(A D B) D C = A D (B D C); A Ç (B D C) = (A Ç B) D (A Ç C);

 

A È CEA = E; A Ç CEA = Æ; CEE = Æ; CEÆ = E; CECEA = A;

 

CE(A È B) = CEA Ç CEB; CE(A Ç B) = CEA È CEB;

 

 

Пример. Исходя из определения равенства множеств и операций над множествами, доказать тождество и проверить его с помощью диаграммы Эйлера - Вейна.

Из записанных выше соотношений видно, что

 

Æ = A \ В

Что и требовалось доказать.

Для иллюстрации полученного результата построим диаграммы Эйлера – Вейна

 

 

А В А В

 

AÇB

 

Пример. Исходя из определения равенства множеств и операций над множествами, доказать тождество.

A \ (B È C) = (A \ B) Ç (A \ C)

 

Если некоторый элемент х Î А \ (В È С), то это означает, что этот элемент принадлежит множеству А, но не принадлежит множествам В и С.

Множество А \ В представляет собой множество элементов множества А, не принадлежащих множеству В.

Множество А \ С представляет собой множество элементов множества А, не принадлежащих множеству С.

Множество (A \ B) Ç (A \ C) представляет собой множество элементов, которые принадлежат множеству А, но не принадлежат ни множеству В, ни множеству С.

Таким образом, тождество можно считать доказанным.

 


Отношения и функции.

 

Определение. Упорядоченной парой (a, b) двух элементов a и b называется множество {{ a },{a, b}}.

Для любых элементов a, b, c, d справедливо соотношение:

 

Определение. Декартовым произведением множеств А и В называется множество всех упорядоченных пар (a, b), где а ÎА, b ÎB.

 

Декартово произведение п равных множеств А будет называться п – й декартовой степенью множества А и обозначаться Аn.

 

Определение. n – мерным отношением R на непустом множестве А называется подмножество Аn. Если R – n – мерное отношение на множестве А и (а12,…аn) ÎR, то говорят, что отношение R выполняется для элементов а12,…аn и записывают R а1а2…аn. Если n = 2, то такое отношение называется бинарным.

Для бинарного отношения вместо общей записи R a1a2 применяют запись а1Ra2.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-27 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: