Элементы математической логики.




 

Математическая логика – разновидность формальной логики, т.е. науки, которая изучает умозаключения с точки зрения их формального строения.

 

Определение. Высказыванием называется предложение, к которому возможно применить понятия истинно или ложно.

 

В математической логике не рассматривается сам смысл высказываний, определяется только его истинность или ложность, что принято обозначать соответственно И или Л.

*Замечание: Равнозначными указанным обозначениям И и Л являются 1, что соответствует истине и 0 - высказывание ложно.

 

Понятно, что истинные и ложные высказывания образуют соответствующие множества. С помощью простых высказываний можно составлять более сложные, соединяя простые высказывания союзами “и”, “или”.

Таким образом, операции с высказываниями можно описывать с помощью некоторого математического аппарата.

 

Вводятся следующие логические операции (связки) над высказываниями

 

1) Отрицание. Отрицанием высказывания Р называется высказывание, которое истинно только тогда, когда высказывание Р ложно.

Обозначается Р или .

 

Соответствие между высказываниями определяется таблицами истинности. В нашем случае эта таблица имеет вид:

 

P Р
И Л
Л И

 

2) Конъюнкция. Конъюнкцией двух высказываний P и Q называется высказывание, истинное тогда и только тогда, когда истинны оба высказывания.

Обозначается P&Q или РÙQ.

 

P Q P&Q
И И И
И Л Л
Л И Л
Л Л Л

3) Дизъюнкция. Дизъюнкцией двух высказываний P и Q называется высказывание, ложное тогда и только тогда, когда оба высказывания ложны.

Обозначается PÚQ.

 

P Q PÚQ
И И И
И Л И
Л И И
Л Л Л

 

4) Импликация. Импликацией двух высказываний P и Q называется высказывание, истинное тогда и только тогда, когда высказывание Р истинно, а Q – ложно.

Обозначается PÉQ (или РÞQ). Высказывание Р называется посылкой импликации, а высказывание Q – следствием.

 

P Q PÞQ
И И И
И Л Л
Л И И
Л Л И

 

5) Эквиваленция. Эквиваленцией двух высказываний P и Q называется высказывание, истинное тогда и только тогда, когда истинности высказываний совпадают.

Обозначается Р~Q или РÛQ.

 

P Q P~Q
И И И
И Л Л
Л И Л
Л Л И

 

С помощью этих основных таблиц истинности можно составлять таблицы истинности сложных формул.

 

Пример. С помощью таблиц истинности проверить, являются ли эквивалентными формулы j и y.

Составим таблицы истинности для каждой формулы:

 

p r (pÙr)
И И Л И И
И Л Л Л И
Л И И Л Л
Л Л И Л Л

 

p r
И И Л Л Л И
И Л Л И И И
Л И И Л И И
Л Л И И И И

 

Данные формулы не являются эквивалентными.

 

Пример. С помощью таблиц истинности проверить, являются ли эквивалентными формулы j и y.

 

Составим таблицы истинности для заданных формул.

 

p q r pÛq (pÛq)Úr
И И И И И
И И Л И И
И Л И Л И
И Л Л Л Л
Л И И Л И
Л И Л Л Л
Л Л И И И
Л Л Л И И

 

 

p q r pÞq qÞp (pÞq)Ú(qÞp) (pÞq)Ú(qÞp)Úr
И И И И И И И
И И Л И И И И
И Л И Л И И И
И Л Л Л И И И
Л И И И Л И И
Л И Л И Л И И
Л Л И И И И И
Л Л Л И И И И

 

Из составленных таблиц видно, что данные формулы не равносильны.

 

 

Основные равносильности.

 

Для любых формул А, В и С справедливы следующие равносильности:

 

A & B º B & A; A & A º A; A & (B & C) º (A & B) & C;

 

A Ú B º B Ú A; A Ú A º A; A Ú (B Ú C) º (A Ú B) Ú C;

 

A Ú (B & C) º (A Ú B) & (A Ú C); A & (B Ú C) º (A & B) Ú (A & C);

 

A & (A Ú B) º A; A Ú (A & B) º A; ØØA º A; Ø(A & B) º ØA Ú ØB;

 

A º (A & B) Ú (A & ØB); A º (A Ú B) & (A Ú ØB);

 

Булевы функции.

 

Определение. Булевой функцией f(X1, X2, …, Xn) называется произвольная n – местная функция, аргументы и значения которой принадлежат множеству {0, 1}.

 

Вообще говоря, между логическими высказываниями, логическими связками и булевыми функциями просматривается явная аналогия. Если логические функции могут принимать значения истинно или ложно, то для булевой функции аналогами этих значений будут значения 0 или 1.

Для булевых функций также можно составить таблицы значений, соответствующим основным логическим операциям.

 

X1 X2 ØX1 X1&X2 X1ÚX2 X1ÞX2 X1ÛX2
             
             
             
             

 

 

Исчисление предикатов.

 

Определение. Предикатом P(x1, x2, …, xn) называется функция, переменные которой принимают значения из некоторого множества М, а сама функция принимает два значения: И (истина) и Л (ложь), т.е.

Предикат от п аргументов называется п – местным предикатом. Высказывания считаются нуль – местными предикатами.

Над предикатами можно производить обычные логические операции, в результате которых получаются новые предикаты.

 

Кроме обычных логических операций к предикатам применяются также специальные операции, называемые кванторами.

Кванторы бывают двух видов:

 

1) Квантор общности. Обозначается (" х) Р(х). Квантором общности называется высказывание истинное, когда Р(х) истинно для каждого элемента х из множества М, и ложное – в противном случае.

 

2) Квантор существования. Обозначается ($ х) Р(х). Квантором существования называется высказывание, истинное, когда существует элемент из множества М, для которого Р(х) истинно, и ложное в противном случае.

 

Операцию связывания квантором можно применять и к предикатам от большего числа переменных.

 

Для формул логики предикатов сохраняется справедливость всех правил равносильных преобразований логики высказываний. Кроме того, справедливы следующие свойства:

 

1) Перенос квантора через отрицание.

Ø(" x) A (x) º ($ xA (x); Ø($ x) A (x) º (" xA (x);

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-27 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: