Метод Данилевского развертывание векового определителя.




Определение. Квадратная матрица Р порядка m называется подобной матрице А, если она представлена в виде

,

где S - невыродженная квадратная матрица порядка m.

ТЕОРЕМА. Характеристический определитель исходной и подобной матрицы совпадают.

Доказательство.

Идея метода Данилевского состоит в том, что матрица А подобным преобразованиям приводится, к так называемой нормальной форме Фробениуса

 

.

Характеристическое уравнение для матрицы Р имеет простой вид

т.е. коэффициенты при степенях характеристического полинома непосредственно выражаются через элементы первой строки матрицы Р.

Приведение матрицы А к нормальной форме Фробениуса Р осуществляется последовательно построкам, начиная с последеней строки.

Приведем матрицу А

 

подобным преобразование к виду

Пусть Можн проверить,что такой вид имеет матрица , которая равна

где

 

 

Слудующий шаг - приведение матрицы подобным преобразованием к виду , где и вторая снизу строка имеет единицу в -ом столбце, а все остальные элементы строки равны нулю:

 

Если то можно проверить, что такой вид имеет матрица :

где

Таким образом

Далее процедура аналогичная, если на кождом шаге в очередной строке, на месте которого подобным преобразованием нужно получить единицу, не равную нулю.

В этом случае (будем называт его регулярным) нормальная формула Фробениуса будет получена за (m -1) шагов и будет иметь вид

Рассмотрим нерегулярный случай, когда матрица, полученная в результате подобных преобразований приведена уже к виду

и элемент . Таким образом обычная процедура метода Данилевского не подходит из-за необходимости деления на ноль.

В этой ситуации возможно два случая. В первом случае к-й

строке левее элемента есть элемент

Тогда домножая матрицу слева и справа на элементарную матрицу перестановок , получаем матрицу

,

у которой по сравнению с матрицей переставлены l -я и (k-1)- я строка l- й и (k-1)- й стодбец. В результате на необходимом нам месте оказывается ненулевой элемент , уже преобразованная часть матрицы не меняется, можно применять обычный шаг метода Данилевского к матрице . Она подбна матрице (и, следовательно, исходной матрице А), т.к. елементарная матрица перестановок совпадает со своей обратной, т.е.

Рассмотрим второй нерегулярный случай, когда в матрице ýлемент и все элементы этой строки, которые тоже находятся левее его, тоже равны нулю. В этом случае характеристический определитель матрицы можно представить в виде

где і - единичные матрицы соответствующей размерности, а квадратные матрицы и имееют вид:

 

Обративм внимание на то, что матрица уже нормальную форму Фробениуса, и поэтому сомножитель просто развертывается в виде многочлена с коэффциентами, равными элементам первой строки.

Сомножитель , åñòü характеристический определитель матрицы . Для развертывания можн опять применять метод Данилевского, приводя матрицу подобными преобразованиями к нормальной форме Фробениуса.

Предположим теперь, что матрица А подобным преобразованиям

уже приведена к нормальной форме Фробениуса. Решая характеристическое уравнение

,

находим одним из известных методов его корни которые являются собственными значениями матрицы Р и исходной матрицы А.

Теперь стоит задача отыскать собственные векторы, соответствующие этим собственным значениям, т.е. векторы такие, что

Решим ее следующим образом: найдем собственные векторы матрицы Р, а затем по определенному соотношению я пересчитаем собственные векторы матрицы А. Это соотношение дает следующая теорема.

ТЕОРЕМА. Пусть є есть собственное значение, а есть соответствующий собственный вектор матрицы Р, которая подобна матрице А, т.е.

Тогда есть собственный вектор матрицы А, соответствующий собственному значению

Доказательство. Тривиально следует из того, что

Домножая левую и правую часть этого равенства слева на S,

имеем

А это и означает, что -собственный вектор матрицы А,

отвечающий собственному значению

Íàéäåì ñîáñòâåííûé вектор матрицы Р, которая имеет нормальную форму Фробениуса и подобна матрице А. Записывая в развернутой форме, имеем

или

В этой системе одна из переменных может быть сделана свободной и ей может быть придано произвольное значение. В качестве таковой возьмем и положим

Тогда последовательно находим

,

т.е. искомый собственный вектор матрицы Р имеет вид

.

Если процесс приведения матрицы А к форме Р был регулярным, то

 ñîîòâåòñòâèè ñ òåîðåìîé ñîáñòâåííûì âåêòîðîì ìàòðèöû А для собственного значения будет вектор

Таким образом, задача вычисления собственных векторов матрицы А решена.


ЧИСЛЕННОЕ ДИФФЕРЕНЦИРОВАНИЕ.

 

Пусть имеется функция которую необходимо продифференцировать несколько раз и найти эту производную в некоторой точке.

Если задан явный вид функции, то выражение для производной часто оказывается достаточно сложным и желательно его заменить более простым. Если же функция задана только в некоторых точках (таблично), то получить явный вид ее производных ввобще невозможно. В этих ситуациях возникает необходимость приближенного (численного) дифференцирования.

Простейшая идея численного дифференцирования состоит в том, что функция заменяется интерполяционным многочленом (Лагранжа, Ньютона) и производная функции приближенного заменяется соответствующей производной интерполяционного многочлена

Рассмотрим простейшие формулы численного дифференцирования, которые получаются указанным способом.

Будем предполагать, что функция задана в равностоящих узлах


Ее значения и значения производных в узлах будем обозначать

Пусть функция задана в двух точках и ее значения

Посстроим интерполяционный многочлен первой степени

 

Производная равна

Производную функцию в точке приближенно заменяем производной интерполяционного многочлена

(1)

Величина называется первой разностной производной.

Пусть задана в трех точках

Интерполяционный многочлен Ньютона второй степени имеет вид

Берем производную

В точке она равна

Получаем приближенную формулу

(2)

Величина называется центральной разностной производной.

Наконец, если взять вторую производную

получаем приближенную формулу.

(3)

Величина называется второй разностной производной.

Формулы (1)-(3) называются формулами численного дифференцирования.

Предполагая функцию достаточное число раз непрерывно дифференцируемой, получим погрешности приближенных формул (1)-(3).

В дальнейшем нам понадобится следующая лемма.

Лемма 1. Пусть произвольные точки, Тогда существует такая точка что

Доказательство. Очевидно неравенство

По теореме Больцано-Коши о промежуточных значениях непрерывной функции на замкнутом отрезке она принимает все значения между и Значит существует такая точка что выполняет указанное в лемме равенство.

Погрешности формул численного дифференцирования дает следующая лемма.

Лемма 2.

1.Предположим, что Тогда существует такая точка , что

(4)

2. Если то существует такая точка , что

(5)

3. Когда то существует такая, что

(6) Доказательство. По формуле Тейлора

откуда следует (4).

Если то по формуле Тейлора

(7)

где

Подставим (7) в Получаем

Заменяя в соответствии с леммою 1

получаем

Откуда и следует (6).

Равенство (5) доказывается аналогично (доказательство провести самостоятельно).

Формулы (4)-(6) называются формулами численного дифференцирования с остаточными членами.

Погрешности формул (1)-(3) оцениваются с помощью следующих неравенств, которые вытекают из соотношений (4)-(6):

Говорят, что погрешность формулы (1) имеет первый порядок относительно (или порядка ), а погрешность формул (2) и (3) имеет второй порядок относительно (или порядка ). Также говорят, что формула численного дифференцирования (1) первого порядка точности (относительно ), а формулы (2) и (3) имеют второй порядок точности.

Указанным способом можно получать формулы численного дифференцирования для более старших производных и для большего количества узлов интерполирования.

Выбор оптимального шага. Допустим, что граница абсолютной погрешности при вычислении функции в каждой точке удовлетворяет неравенству

(8)

Пусть в некоторой окрестности точки производные, через которые выражаются остаточные члены в формулах (5), (6), непрерывны и удовлетворяют неравенствам

(9)

где - некоторые числа. Тогда полная погрешность формул (2), (3) (без учета погрешностей округления) в соответствии с (5), (6), (8), (9)не превосходит соответственно величин

Минимизация по этих величин приводит к следующим значениям :

 

(12)

при этом

(13)

Если при выбранном для какой-либо из формул (2), (3) значении отрезок не выходит за пределы окрестности точки , в которой выполняется соответствующее неравенство (9), то найденное есть оптимальным и полная погрешность численного дифференцирования оценивается соответствующей величиной (13).




Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: