Доступность данных и материалов




Все данные, полученные или проанализированные в ходе этого исследования, включены в эту опубликованную статью.

Вклад авторов

MS, ОС приняли участие в разработке и написании текста. AP, GK, LH, MM, JP приняли участие в написании текста. Все авторы прочли и одобрили конечную статью.

Согласие на этику и согласие на участие

Не применимо.

Согласие на публикацию

Не применимо.

Конкурирующие интересы

Авторы заявляют, что не имеют конкурирующих интересов.

Примечание издателя

Springer Nature остается нейтральной в отношении юридических заявлений насчет опубликованных карт и ​​связей с какими-либо организациями.

Открытый доступ

Эта статья распространяется в соответствии с лицензией Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), которая разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии, что будет упомянут оригинальный автор (-ы) и источник, указана ссылка на лицензию Creative Commons и информация о внесенных изменениях. The Creative Commons Public Domain Dedication (https://creativecommons.org/publicdomain/zero/1.0/) применяется ко всем данным, доступным в этой статье, если иначе не указано.


 

Ссылки

1. Food and Drug Administration. Information for consumers on using dietary supplements. 2016.
Google Scholar

2. Herbold NH, Visconti BK, Frates S, Bandini L. Traditional and nontraditional supplement use by collegiate female varsity athletes. Int J Sport Nutr Exerc Metab. 2004;14:586–93.
PubMed View Article Google Scholar

3. Williams M. Dietary supplements and sports performance: herbals. J Int Soc Sports Nutr. 2006;3:1–6.
Google Scholar

4. Avigan M, Mozersky R, Seeff L. Scientific and regulatory perspectives in herbal and dietary supplement associated hepatotoxicity in the United States. Int J Mol Sci. 2016;17:331.
PubMed PubMed Central View Article Google Scholar

5. Ksouri R, Megdiche W, Debez A, Falleh H, Grignon C, Abdelly C. Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol Biochem PPB. 2007;45:244–9.
PubMed View Article Google Scholar

6. Sumbul S, Ahmad MA, Asif M, Akhtar M. Myrtuscommunis Linn. A review. Indian J Nat Prod Resour. 2011;2:395–402.
Google Scholar

7. Antonio J, Uelmen J, Rodriguez R, Earnest C. The effects of Tribulus terrestris on body composition and exercise performance in resistance-trained males. Int J Sport Nutr Exerc Metab. 2000;10:208–15.
PubMed View Article Google Scholar

8. Chen CK, Muhamad AS, Ooi FK. Herbs in exercise and sports. J Physiol Anthropol. 2012;31:4.
PubMed PubMed Central View Article Google Scholar

9. Bucci LR. Selected herbals and human exercise performance. Am J Clin Nutr. 2000;72(2 Suppl):624S–36S.
PubMed View Article Google Scholar

10. Kiew OF, Singh R, Sirisinghe RG, Suen AB, Jamalullail SMS. Effects of a herbal drink on cycling endurance performance. Malays J Med Sci. 2003;10:78–85.
PubMed PubMed Central Google Scholar

11. Muhamad AS, Keong CC, Kiew OF, Abdullah MR, Chan K-L. Effects of Eurycoma longifolia Jack supplementation on recreational athletes’ endurance running capacity and physiological responses in the heat. Int J Appl Sport Sci. 2010;22:1–19.
Google Scholar

12. Ping FWC, Keong CC, Bandyopadhyay A. Effects of acute supplementation of Panax ginseng on endurance running in a hot & humid environment. Indian J Med Res. 2011;133:96–102.
PubMedPubMed CentralGoogle Scholar

13. Engels HJ, Wirth JC. No ergogenic effects of ginseng (Panax ginseng C.A. Meyer) during graded maximal aerobic exercise. J Am Diet Assoc. 1997;97:1110–5.
PubMedView ArticleGoogle Scholar

14. Pokrywka A, Obmiński Z, Malczewska-Lenczowska J, Fijatek Z, Turek-Lepa E, Grucza R. Insights into supplements with Tribulus Terrestris used by athletes. J Hum Kinet. 2014;41:99–105.
PubMedPubMed CentralView ArticleGoogle Scholar

15. Popov IM, Goldwag WJ. A review of the properties and clinical effects of ginseng. Am J Chin Med. 1973;1:263–70.
PubMedView ArticleGoogle Scholar

16. Bahrke MS, Morgan WP. Evaluation of the ergogenic properties of ginseng. Sports Med. 1994;18:229–48.
PubMedView ArticleGoogle Scholar

17. Kennedy DO, Scholey AB. Ginseng: potential for the enhancement of cognitive performance and mood. Pharmacol Biochem Behav. 2003;75:687–700.
PubMedView ArticleGoogle Scholar

18. Zhong G, Jiang Y. Calcium channel blockage and anti-free-radical actions of ginsenosides. Chin Med J. 1997;110:28–9.
PubMedGoogle Scholar

19. Kim SH, Park KS, Chang MJ, Sung JH. Effects of Panax ginseng extract on exercise-induced oxidative stress. J Sports Med Phys Fitness. 2005;45:178–82.
PubMedGoogle Scholar

20. Talbott S, Hughes K. The health professional’s guide to dietary supplements. Lippincott Williams & Wilkins; 2007.
Google Scholar

21. Ahuja A, Goswami A, Adhikari A, Ghosh AK. Evaluation of effects of revital on physical performance in sportsmenle. Indian Pr. 1992;45:685–8.
Google Scholar

22. Indu BJ, Ng LT, Institut Penyelidikan dan Kemajuan Pertanian Malaysia, Malaysia IPP. Herbs: the green pharmacy of Malaysia. Kuala Lumpur: Vinpress; 2000.
Google Scholar

23. Tee TT, Cheah YH, Hawariah LPA. F16, a fraction from Eurycoma longifolia jack extract, induces apoptosis via a caspase-9-independent manner in MCF-7 cells. Anticancer Res. 2007;27:3425–30.
PubMedGoogle Scholar

24. Tran TVA, Malainer C, Schwaiger S, Atanasov AG, Heiss EH, Dirsch VM, et al. NF-κB inhibitors from Eurycoma longifolia. J Nat Prod. 2014;77:483–8.
PubMedPubMed CentralView ArticleGoogle Scholar

25. Hamzah SYA. The ergogenic effects of Eurycoma longifolia Jack: a pilot study (abstract 7). Br J Sport Med. 2003;37:465–6.
Google Scholar

26. Siegel RK. Ginseng and high blood pressure. JAMA. 1980;243(1):32–32.
Google Scholar

27. Nocerino E, Amato M, Izzo AA. The aphrodisiac and adaptogenic properties of ginseng. Fitoterapia. 2000;71(Suppl 1):S1–5.
PubMedView ArticleGoogle Scholar

28. Forgo I, Kirchdorfer AM. On the question of influencing the performance of top spotsmen by means of biologically active substances. ArztlPrax. 1982;33:1784–91.
Google Scholar

29. McNaughton L, Egan G, Caelli G. A comparison of Chinese and Russian ginseng as ergogenic aids to improve various effects of physical fitness. Int Clin Nut Rev. 1989;90:32–5.
Google Scholar

30. van Schepdael P. The effects of ginseng G115 on the physical capacity of endurance sports. Acta Ther. 1993;19:337–47.
Google Scholar

31. Liang MTC, Podolka TD, Chuang WJ. Panax notoginseng supplementation enhances physical performance during endurance exercise. J Strength Cond Res. 2005;19:108–14.
PubMedView ArticleGoogle Scholar

32. Mamrack MD. Exercise and sport pharmacology. Taylor & Francis; 2017.
Google Scholar

33. Bucci L. Nutrients as ergogenic aids for sports and exercise. Boca Raton: CRC Press; 1993.
Google Scholar

34. Kovacs EM, Stegen JHCH, Brouns F. Effect of caffeinated drinks on substrate metabolism, caffeine excretion, and performance. J Appl Physiol. 1998;85:709–15.
PubMedView ArticleGoogle Scholar

35. Senchina DS, Hallam JE, Kohut ML, Nguyen NA, Perera MA. Alkaloids and athlete immune function: caffeine, theophylline, gingerol, ephedrine, and their congeners. Exerc Immunol Rev. 2014;20:68–93.
PubMedGoogle Scholar

36. Sellami M, Abderrahman AB, Casazza GA, Kebsi W, Lemoine-Morel S, Bouguerra L, et al. Effect of age and combined sprint and strength training on plasma catecholamine responses to a Wingate-test. Eur J Appl Physiol. 2014;114:969–82.
PubMedView ArticleGoogle Scholar

37. Schneiker KT, Bishop D, Dawson B, Hackett LP. Effects of caffeine on prolonged intermittent-sprint ability in team-sport athletes. Med Sci Sports Exerc. 2006;38:578–85.
PubMedView ArticleGoogle Scholar

38. Graham TE, Spriet LL. Performance and metabolic responses to a high caffeine dose during prolonged exercise. J Appl Physiol. 1991;71:2292–8.
PubMedView ArticleGoogle Scholar

39. Collomp K, Ahmaidi S, Chatard JC, Audran M, Préfaut C. Benefits of caffeine ingestion on sprint performance in trained and untrained swimmers. Eur J Appl Physiol Occup Physiol. 1992;64:377–80.
PubMedView ArticleGoogle Scholar

40. Yeomans M, Ripley T, Davies L, Rusted J, Rogers P. Effects of caffeine on performance and mood depend on the level of caffeine abstinence. Psychopharmacology. 2002;164:241–9.
PubMedView ArticleGoogle Scholar

41. Kamat JP, Boloor KK, Devasagayam TP, Jayashree B, Kesavan PC. Differential modification by caffeine of oxygen-dependent and independent effects of gamma-irradiation on rat liver mitochondria. Int J Radiat Biol. 2000;76:1281–8.
PubMedView ArticleGoogle Scholar

42. Bellet S, Kershbaum A, Aspe J. The effect of caffeine on free fatty acids. Arch Intern Med. 1965;116:750–2.
PubMedView ArticleGoogle Scholar

43. Ping WC, Keong CC, Bandyopadhyay A. Effects of acute supplementation of caffeine on cardiorespiratory responses during endurance running in a hot & humid climate. Indian J Med Res. 2010;132:36–41.
PubMedGoogle Scholar

44. Hartley TR, Lovallo WR, Whitsett TL. Cardiovascular effects of caffeine in men and women. Am J Cardiol. 2004;93:1022–6.
PubMedView ArticleGoogle Scholar

45. Lieberman HR, Tharion WJ, Shukitt-Hale B, Speckman KL, Tulley R. Effects of caffeine, sleep loss, and stress on cognitive performance and mood during U.S. navy SEAL training. Sea-air-land. Psychopharmacology. 2002;164:250–61.
PubMedView ArticleGoogle Scholar

46. WADA Prohibited list 2017.
Google Scholar

47. Rafiul Haque M, Ansari SH, Rashikh A. Coffea arabica seed extract stimulate the cellular immune function and cyclophosphamide-induced immunosuppression in mice. Iran J Pharm Res IJPR. 2013;12:101–8.
PubMedGoogle Scholar

48. Hsu PP. Natural medicines comprehensive database. J Med Lib Assoc. 2002;90(1):114.
Google Scholar

49. Burke LM. Caffeine and sports performance. Appl Physiol Nutr Metab. 2008;33:1319–34.
PubMedView ArticleGoogle Scholar

50. Boozer CN, Nasser JA, Heymsfield SB, Wang V, Chen G, Solomon JL. An herbal supplement containing ma Huang-guarana for weight loss: a randomized, double-blind trial. Int J Obes Relat Metab Disord. 2001;25:316–24.
PubMedView ArticleGoogle Scholar

51. Dulloo AG, Duret C, Rohrer D, Girardier L, Mensi N, Fathi M, et al. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr. 1999;70:1040–5.
PubMedView ArticleGoogle Scholar

52. Nakagawa K, Ninomiya M, Okubo T, Aoi N, Juneja LR, Kim M, et al. Tea catechin supplementation increases antioxidant capacity and prevents phospholipid hydroperoxidation in plasma of humans. J Agric Food Chem. 1999;47:3967–73.
PubMedView ArticleGoogle Scholar

53. Martin BJ, MacInnis MJ, Gillen JB, Skelly LE, Gibala MJ. Short-term green tea extract supplementation attenuates the postprandial blood glucose and insulin response following exercise in overweight men. Appl Physiol Nutr Metab. 2016;41:1–7.
View ArticleGoogle Scholar

54. Gahreman DE, Boutcher YN, Bustamante S, Boutcher SH. The combined effect of green tea and acute interval sprinting exercise on fat oxidation of trained and untrained males. J Exerc Nutr Biochem. 2016;20:1–8.
View ArticleGoogle Scholar

55. Rahimi R, Falahi Z. Effect of green tea extract on exercise-induced oxidative stress in obese men: a randomized, double-blind, placebo-controlled, crossover study. Asian J Sports Med. 2017;8:1–7.
Google Scholar

56. Jówko E, Długołęcka B, Makaruk B, Cieśliński I. The effect of green tea extract supplementation on exercise-induced oxidative stress parameters in male sprinters. Eur J Nutr. 2015;54:783–91.
PubMedView ArticleGoogle Scholar

57. Chacko SM, Thambi PT, Kuttan R, Nishigaki I. Beneficial effects of green tea: a literature review. Chin Med. 2010;5:13.
PubMedPubMed CentralView ArticleGoogle Scholar

58. Bonci L. Sport nutrition for coaches. Human kinetics; 2009.
Google Scholar

59. Kim SY, Oh MR, Kim MG, Chae HJ, Chae SW. Anti-obesity effects of yerba mate (ilex Paraguariensis): a randomized, double-blind, placebo-controlled clinical trial. BMC Complement Altern Med. 2015;15:338.
PubMedPubMed CentralView ArticleGoogle Scholar

60. Hoffman JR, Kang J, Ratamess NA, Rashti SL, Tranchina CP, Faigenbaum AD. Thermogenic effect of an acute ingestion of a weight loss supplement. J Int Soc Sports Nutr. 2009;6:1.
PubMedPubMed CentralView ArticleGoogle Scholar

61. Bell DG, Jacobs I, Zamecnik J. Effects of caffeine, ephedrine and their combination on time to exhaustion during high-intensity exercise. Eur J Appl Physiol. 1998;77:427–33.
View ArticleGoogle Scholar

62. Shekelle PG, Hardy ML, Morton SC, Maglione M, Mojica WA, Suttorp MJ, et al. Efficacy and safety of ephedra and ephedrine for weight loss and athletic performance: a meta-analysis. JAMA J Am Med Assoc. 2003;289:1537–45.
Google Scholar

63. Lieberman HR. The effects of ginseng, ephedrine, and caffeine on cognitive performance, mood and energy. Nutr Rev. 2001;59:91–102.
PubMedView ArticleGoogle Scholar

64. Oshima N, Yamashita T, Hyuga S, Hyuga M, Kamakura H, Yoshimura M, et al. Efficiently prepared ephedrine alkaloids-free Ephedra herb extract: a putative marker and antiproliferative effects. J Nat Med. 2016;70:554–62.
PubMedPubMed CentralView ArticleGoogle Scholar

65. Powers ME. Ephedra and its application to sport performance: another concern for the athletic trainer? J Athl Train. 2001;36:420–4.
PubMedPubMed CentralGoogle Scholar

66. Molnár D, Török K, Erhardt E, Jeges S. Safety and efficacy of treatment with an ephedrine/caffeine mixture. The first double-blind placebo-controlled pilot study in adolescents. Int J Obes Relat Metab Disord. 2000;24:1573–8.
PubMedView ArticleGoogle Scholar

67. Van der Bijl P. Dietary supplements containing prohibited substances: a review (part 1). South African J Sport Med. 2014;26:59–61.
View ArticleGoogle Scholar

68. Robertson T. Nutrition and the strength athlete. 2000.
Google Scholar

69. Avois L, Robinson N, Saudan C, Baume N, Mangin P, Saugy M. Central nervous system stimulants and sport practice. Br J Sports Med. 2006;40(Supplement 1):i16–20.
PubMedPubMed CentralView ArticleGoogle Scholar

70. Greenway FL. The safety and efficacy of pharmaceutical and herbal caffeine and ephedrine use as a weight loss agent. Obes Rev. 2001;2:199–211.
PubMedView ArticleGoogle Scholar

71. FOOD US. Drug Administration Code of Federal Regulations Title 21. Department of Health and Human Services, ed. 21CFR20157. Washington: US Food and Drug Administration; 2014.
Google Scholar

72. Wilson PB. Ginger (Zingiber officinale) as an analgesic and ergogenic aid in sport. J Strength Cond Res. 2015;29:2980–95.
PubMedView ArticleGoogle Scholar

73. Nakhostin-Roohi B, Nasirvand Moradlou A, Mahmoodi Hamidabad S, Ghanivand B. The effect of curcumin supplementation on selected markers of delayed onset muscle soreness (DOMS). Ann Appl Sport Sci. 2016;4:25–31.
View ArticleGoogle Scholar

74. Hsu CH, Cheng AL. Clinical studies with curcumin. In: Aggarwal BB, Surh YJ, Shishodia S, editors. The molecular targets and therapeutic uses of curcumin in health and disease. Boston, MA: Springer US; 2007. p. 471–480.
Google Scholar

75. Ivanova S, Ivanov K, Mladenov R, Papanov S, Ivanova S, Obreshkova D, Atanasov PPV. Food supplements with anabolic and androgenic activity-UHPLC analysis of food additives, containing Tribulusterrestris extract. World J Pharma Res. 2016;5:6–13.
Google Scholar

76. Zhu W, Du Y, Meng H, Dong Y, Li L. A review of traditional pharmacological uses, phytochemistry, and pharmacological activities of Tribulus terrestris. Chem Cent J. 2017;11:60.
PubMedPubMed CentralView ArticleGoogle Scholar

77. Rogerson S, Riches CJ, Jennings C, Weatherby RP, Meir RA, Marshall-Gradisnik SM. The effect of five weeks of Tribulus terrestris supplementation on muscle strength and body composition during preseason training in elite rugby league players. J Strength Cond Res. 2007;21:348–53.
PubMedGoogle Scholar

78. Rendic S, Pickett S, Bromley B. Recent advances in doping analysis; 1997.
Google Scholar

79. Neychev VK, Mitev VI. The aphrodisiac herb Tribulus terrestris does not influence the androgen production in young men. J Ethnopharmacol. 2005;101:319–23.
PubMedView ArticleGoogle Scholar

80. Shaw G, Slater G, Burke LM. Supplement use of elite Australian swimmers. Int J Sport Nutr Exerc Metab. 2016;26:249–58.
PubMedView ArticleGoogle Scholar

81. Pokrywka A, Krzywański J. Kardiologiasportowa w praktyceklinicznej. 2016.
Google Scholar

82. Huang SH, Johnson K, Pipe AL. The use of dietary supplements and medications by Canadian athletes at the Atlanta and Sydney Olympic Games. Clin J Sport Med. 2006;16(1):27–33.
Google Scholar

83. Ryan M, Lazar I, Nadasdy GM, Nadasdy T, Satoskar AA. Acute kidney injury and hyperbilirubinemia in a young male after ingestion of Tribulus terrestris. Clin Nephrol. 2015;83(2015):177–83.
PubMedView ArticleGoogle Scholar

84. Qureshi A, Naughton DP, Petroczi A. A systematic review on the herbal extract Tribulus terrestris and the roots of its putative aphrodisiac and performance enhancing effect. J Diet Suppl. 2014;11:64–79.
PubMedView ArticleGoogle Scholar

85. Cui JL, Guo TT, Ren ZX, Zhang NS, Wang ML. Diversity and antioxidant activity of culturable endophytic fungi from alpine plants of Rhodiola crenulata, R. Angusta, and R. Sachalinensis. PLoS One. 2015;10:e0118204.
PubMedPubMed CentralView ArticleGoogle Scholar

86. Walpurgis K, Schultze G, Mareck U, Geyer H, Schänzer W, Thevis M. Recent advances in doping analysis. 2016.
Google Scholar

87. De Bock K, Eijnde BO, Ramaekers M, Hespel P. Acute Rhodiola rosea intake can improve endurance exercise performance. Int J Sport Nutr Exerc Metab. 2004;14:298–307.
PubMedView ArticleGoogle Scholar

88. Parisi A, Tranchita E, Duranti G, Ciminelli E, Quaranta F, Ceci R, et al. Effects of chronic Rhodiola Rosea supplementation on sport performance and antioxidant capacity in trained male: preliminary results. J Sports Med Phys Fitness. 2010;50:57–63.
PubMedGoogle Scholar

89. Noreen EE, Buckley JG, Lewis SL, Brandauer J, Stuempfle KJ. The effects of an acute dose of Rhodiola rosea on endurance exercise performance. J strength Cond Res. 2013;27:839–47.
PubMedView ArticleGoogle Scholar

90. Colson SN, Wyatt FB, Johnston DL, Autrey LD, FitzGerald YL, Earnest CP. Cordyceps sinensis- and Rhodiola rosea-based supplementation in male cyclists and its effect on muscle tissue oxygen saturation. J Strength Cond Res. 2005;19:358–63.
PubMedGoogle Scholar

91. Earnest CP, Morss GM, Wyatt F, Jordan AN, Colson S, Church TS, et al. Effects of a commercial herbal-based formula on exercise performance in cyclists. Med Sci Sports Exerc. 2004;36:504–9.
PubMedView ArticleGoogle Scholar

92. Ahmed M, Henson DA, Sanderson MC, Nieman DC, Zubeldia JM, Shanely RA. Rhodiola rosea exerts antiviral activity in athletes following a competitive Marathon race. Front Nutr. 2015;2:24.
PubMedPubMed CentralView ArticleGoogle Scholar

93. Zhang Z, Wang X, Zhang Y, Ye G. Effect of Cordyceps sinensis on renal function of patients with chronic allograft nephropathy. Urol Int. 2011;86:298–301.
PubMedView ArticleGoogle Scholar

94. Kan WC, Wang HY, Chien CC, Li SL, Chen YC, Chang LH, et al. Effects of extract from solid-state fermented Cordyceps sinensis on type 2 diabetes mellitus. Evid Based Complement Alternat Med. 2012;2012:743107.
PubMedPubMed CentralView ArticleGoogle Scholar

95. Chiou WF, Chang PC, Chou CJ, Chen CF. Protein constituent contributes to the hypotensive and vasorelaxant activities of Cordyceps sinensis. Life Sci. 2000;66:1369–76.
PubMedView ArticleGoogle Scholar

96. Li Y, Chen GZ, Jiang DZ. Effect of Cordyceps sinensis on erythropoiesis in mouse bone marrow. Chin Med J. 1993;106:313–6.
PubMedGoogle Scholar

97. Nagata A, Tajima T, Uchida M. Supplemental anti-fatigue effects of Cordyceps sinensis (Tochu-Kaso) extract powder during three stepwise exercise of human. Japanese J Phys Fit Sport Med. 2006;55 Supplement:S145–S152.
Google Scholar

98. Nagata A, Tajima T. Anti-fatigue effectiveness of Cordyceps sinensis extract by the double-blind method. Hiro to Kyuyo no Kagaku. 2000;17:89–97.
Google Scholar

99. Hsu CC, Lin YA, Su B, Li JH, Huang HY, Hsu MCP. No effect of Cordyceps sinensis supplementation on testosterone level and muscle strength in healthy young adults for resistance training. Biol Sport. 2011;28:107–10.
View ArticleGoogle Scholar

100. Parcell AC, Smith JM, Schulthies SS, Myrer JW, Fellingham G. Cordyceps Sinensis (CordyMax Cs-4) supplementation does not improve endurance exercise performance. Int J Sport Nutr Exerc Metab. 2004;14:236–42.
PubMedView ArticleGoogle Scholar

101. Chen CY, Hou CW, Bernard JR, Chen CC, Hung TC, Cheng LL, et al. Rhodiola crenulata- and Cordyceps sinensis-based supplement boosts aerobic exercise performance after short-term high altitude training. High Alt Med Biol. 2014;15:371–9.
PubMedPubMed CentralView ArticleGoogle Scholar

102. Curtis-Prior P, Vere D, Fray P. Therapeutic value of Ginkgo biloba in reducing symptoms of decline in mental function. J Pharm Pharmacol. 1999;51:535–41.
PubMedView ArticleGoogle Scholar

103. Cott J. NCDEU update. Natural product formulations available in europe for psychotropic indications. Psychopharmacol Bull. 1995;31:745–51.
PubMedGoogle Scholar

104. Schneider B. Biloba extract in peripheral arterial diseases: meta-analysis of controlled clinical studies. Arzneimittelforschung. 1992;42:428–36.
PubMedGoogle Scholar

105. Wang J, Zhou S, Bronks R, Graham J, Myers S. Supervised exercise training combined with ginkgo biloba treatment for patients with peripheral arterial disease. Clin Rehabil. 2007;21:579–86.
PubMedView ArticleGoogle Scholar

106. Zhang Z, Tong Y, Zou J, Chen P, Yu D. Dietary supplement with a combination of Rhodiola crenulata and Ginkgo biloba enhances the endurance performance in healthy volunteers. Chin J Integr Med. 2009;15:177–83.
PubMedView ArticleGoogle Scholar

107. Baker LB, Nuccio RP, Jeukendrup AE. Acute effects of dietary constituents on motor skill and cognitive performance in athletes. Nutr Rev. 2014;72:790–802.
PubMedView ArticleGoogle Scholar

108. Nash KM, Shah ZA. Current perspectives on the beneficial role of Ginkgo biloba in neurological and cerebrovascular disorders. Integr Med Insights. 2015;10:1–9.
PubMedPubMed CentralView ArticleGoogle Scholar

109. Chan P-C, Xia Q, Fu PP. Ginkgo biloba leave extract: biological, medicinal, and toxicological effects. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2007;25:211–44.
PubMedView ArticleGoogle Scholar

110. Tyler VE. Honest herbal: a sensible guide to the use of herbs and related remedies. 1993.
Google Scholar

111. Eichner ER. Fighting muscle cramps with two spices and one hot fruit. Curr Sports Med Rep. 2016;15:304–5.
PubMedView ArticleGoogle Scholar

112. Mason L, Moore RA, Derry S, Edwards JE, McQuay HJ. Systematic review of topical capsaicin for the treatment of chronic pain. BMJ. 2004;328:991–0.
PubMedPubMed CentralView ArticleGoogle Scholar

113. Conrado de Freitas M, Cholewa JM, Freire RV, Carmo BA, Bottan J, Bratfich M, et al. Acute capsaicin supplementation improves resistance training performance in trained men. J Strength Cond Res. 2017; https://doi.org/10.1519/JSC.0000000000002109.

114. Lim K, Yoshioka M, Kikuzato S, Kiyonaga A, Tanaka H, Shindo M, et al. Dietary red pepper ingestion increases carbohydrate oxidation at rest and during exercise in runners. Med Sci Sports Exerc. 1997;29:355–61.
PubMedView ArticleGoogle Scholar

115. Hsu YJ, Huang WC, Chiu CC, Liu YL, Chiu WC, Chiu CH, et al. Capsaicin supplementation reduces physical fatigue and improves exercise performance in mice. Nutrients. 2016;8:648.
PubMed CentralView ArticleGoogle Scholar

116. Fioranelli M, Del Prete M, Aracena JC, Roccia MG, Dal Lin C, Tomella C. Low-dose therapy for the treatment of low-grade chronic inflammation. In: Integrative cardiology. Springer international publishing; 2017. p. 27–38.
View ArticleGoogle Scholar

117. Knuesel O, Weber M, Suter A. Arnica Montana gel in osteoarthritis of the knee: an open, multicenter clinical trial. Adv Ther. 2002;19:209–18.
PubMedView ArticleGoogle Scholar

118. Tveiten D, Bruset S. Effect of Arnica D30 in marathon runners. Pooled results from two double-blind placebo controlled studies. Homeopathy. 2003;92:187–9.
PubMedView ArticleGoogle Scholar

119. Vickers AJ, Fisher P, Smith C, Wyllie SE, Rees R. Homeopathic Arnica 30x is ineffective for muscle soreness after long-distance running: a randomized, double-blind, placebo-controlled trial. Clin J Pain. 1998;14:227–31.
PubMedView ArticleGoogle Scholar

120. Pumpa KL, Fallon KE, Bensoussan A, Papalia S. The effects of topical Arnica on performance, pain and muscle damage after intense eccentric exercise. Eur J Sport Sci. 2014;14:294–300.
PubMedView ArticleGoogle Scholar

121. Paulsen E. Contact sensitization from Compositae-containing herbal remedies and cosmetics. Contact Dermatitis. 2002;47:189–98.
PubMedView ArticleGoogle Scholar

122. Iannitti T, Morales-Medina JC, Bellavite P, Rottigni V, Palmieri B. Effectiveness and safety of Arnica Montana in post-surgical setting, pain and inflammation. Am J Ther. 2016;23:e184–97.
PubMedView ArticleGoogle Scholar

123. Sinclair S. Chinese herbs: a clinical review of Astragalus, Ligusticum, and Schizandrae. Altern Med Rev. 1998;3:338–44.
PubMedGoogle Scholar

124. Kurashige S, Akuzawa Y, Endo F. Effects of astragali radix extract on carcinogenesis, cytokine production, and cytotoxicity in mice treated with a carcinogen, N-butyl-N’-butanolnitrosoamine. Cancer Investig. 1999;17:30–5.
View ArticleGoogle Scholar

125. Auyeung KK, Han Q-B, Ko JK. Astragalus membranaceus: a review of its protection against inflammation and gastrointestinal cancers. Am J Chin Med. 2016;44:1–22.
PubMedView ArticleGoogle Scholar

126. Chen KT, Su CH, Hsin LH, Su YC, Su YP, Lin JG. Reducing fatigue of athletes following oral administration of huangqi jianzhong tang. Acta Pharmacol Sin. 2002;23:757–61.
PubMedGoogle Scholar

127. Rogers ME, Bohlken RM, Beets MW, Hammer SB, Ziegenfuss TN, Sarabon N. Effects of creatine, ginseng, and astragalus supplementation on strength, body composition, mood, and blood lipids during strength-training in older adults. J Sports Sci Med. 2006;5:60–9.
PubMedPubMed CentralGoogle Scholar

128. Block KI, Mead MN. Immune system effects of echinacea, ginseng, and astragalus: a review. Integr Cancer Ther. 2003;2:247–67.
PubMedView ArticleGoogle Scholar

129. Shara M, Stohs SJ. Efficacy and safety of white willow bark (Salix alba) extracts. Phyther Res. 2015;29:1112–6.
View ArticleGoogle Scholar

130. Schmid B, Lüdtke R, Selbmann HK, Kötter I, Tschirdewahn B, Schaffner W, et al. Efficacy and tolerability of a standardized willow bark extract in patients with osteoarthritis: randomized placebo-controlled, double blind clinical trial. Phytother Res. 2001;15:344–50.
PubMedView ArticleGoogle Scholar

131. Biegert C, Wagner I, Lüdtke R, Kötter I, Lohmüller C, Günaydin I, et al. Efficacy and safety of willow bark extract in the treatment of osteoarthritis and rheumatoid arthritis: results of 2 randomized double-blind controlled trials. J Rheumatol. 2004;31:2121–30.
PubMedGoogle Scholar

132. Chrubasik S, Eisenberg E, Balan E, Weinberger T, Luzzati R, Conradt C. Treatment of low back pain exacerbations with willow bark extract: a randomized double-blind study. Am J Med. 2000;109:9–14.
PubMedView ArticleGoogle Scholar

133. Ozkum D, Yavuz HU. Selected herbals for sports injuries. Nat Prod J. 2013;3:26–9.
Google Scholar

134. Basta P, Pilaczyńska-Szczęśniak Ł, Woitas-Ślubowska D, Skarpańska-Stejnborn A. Influence of Aloe arborescens mill. Extract on selected parameters of pro-oxidant-antioxidant equilibrium and cytokine synthesis in rowers. Int J Sport Nutr Exerc Metab. 2013;23:388–98.
PubMedView ArticleGoogle Scholar

135. Chen CK, Hamdan NF, Ooi FK, Wan Abd Hamid WZ. Combined effects of Lignosus rhinocerotis supplementation and resistance training on isokinetic muscular strength and power, anaerobic and aerobic fitness level, and immune parameters in young males. Int J Prev Med. 2016;7:107.
PubMedPubMed CentralView ArticleGoogle Scholar

136. Bent S, Padula A, Neuhaus J. Safety and efficacy of citrus aurantium for weight loss. Am J Cardiol. 2004;94:1359–61.
PubMedView ArticleGoogle Scholar

137. Firenzuoli F, Gori L, Galapai C. Adverse reaction to an adrenergic herbal extract (Citrus aurantium). Phytomedicine. 2005;12:247–8.
PubMedView ArticleGoogle Scholar

138. Jordan S, Murty M, Pilon K. Products containing bitter orange or synephrine: suspected cardiovascular adverse reactions. CMAJ. 2004;171:993–4.
PubMedGoogle Scholar

139. Hosseinzadeh M, Taherichadorneshin H, Ajam-Zibad M, Abtahi-Eivary S-H. Pre-supplementation of Crocus sativus Linn (saffron) attenuates inflammatory and lipid peroxidation markers induced by intensive exercise in sedentary women. J Appl Pharm Sci. 2017;7:147–51.
Google Scholar

140. Hajizadeh Maleki B, Tartibian B, Mooren FC, Yaghoob Nezhad F, Yaseri M. Saffron supplementation ameliorates oxidative damage to sperm DNA following a 16-week low-to-intensive cycling training in male road cyclists. J Funct Foods. 2016;21:153–66.
View ArticleGoogle Scholar

141. Evans WC, Evans D, Trease GE. Trease and Evans pharmacognosy. Saunders/Elsevier; 2009.
Google Scholar

142. Federation of American Societies for Experimental Biology. Dharavath RN, Swaroop A, Preuss HG, Bagchi M, Kumar P. Federation proceedings. Federation of American societies for experimental biology; 2016.
Google Scholar

143. El-Nawasany SAEM, Shalaby SI, El Badria FA, Magraby GM, Gupta N. Diuretic effect of fenugreek (Trigonella foenum- graecum Linn) in cirrhotic ascitic patients. J Pharmacogn Phytochem JPP. 2017;185:185–9.
Google Scholar

144. Benayad Z, Gómez-Cordovés C, Es-Safi NE. Characterization of flavonoid glycosides from fenugreek (Trigonella foenum-graecum) crude seeds by HPLC-DAD-ESI/MS analysis. Int J Mol Sci. 2014;15:20668–85.
PubMedPubMed CentralView ArticleGoogle Scholar

145. Ikeuchi M, Yamaguchi K, Koyama T, Sono Y, Yazawa K. Effects of fenugreek seeds (Trigonella foenum greaecum) extract on endurance capacity in mice. J Nutr Sci Vitaminol (Tokyo). 2006;52:287–92.
View ArticleGoogle Scholar

146. Wankhede S, Mohan V, Thakurdesai P. Beneficial effects of fenugreek glycoside supplementation in male subjects during resistance training: a randomized controlled pilot study. J Sport Heal Sci. 2016;5:176–82.
View ArticleGoogle Scholar

147. Ouzir M, El Bairi K, Amzazi S. Toxicological properties of fenugreek (Trigonella foenum graecum). Food Chem Toxicol. 2016;96:145–54.
PubMedView ArticleGoogle Scholar

148. Barboni T, Cannac M, Massi L, Perez-Ramirez Y, Chiaramonti N. Variability of polyphenol compounds in Myrtus Communis L. (Myrtaceae) berries from Corsica. Molecules. 2010;15:7849–60.
PubMedView ArticleGoogle Scholar

149. Aidi Wannes W, Mhamdi B, Sriti J, Ben Jemia M, Ouchikh O, Hamdaoui G, et al. Antioxidant activities of the essential oils and methanol extracts from myrtle (Myrtus communis var. italica L.) leaf, stem and flower. Food Chem Toxicol. 2010;48:1362–70.
PubMedView ArticleGoogle Scholar

150. Slimeni O, Sellami M, Ben Attia M, Dhahbi W, Rhibi F, Ben abderrahman A. Effect of Myrtus Communis supplementation on anaerobic performance and selected serum biochemical parameters. Med dello Sport. 2017;70:150–62.
Google Scholar

151. Kähkönen MP, Heinämäki J, Ollilainen V, Heinonen M. Berry anthocyanins: isolation, identification and antioxidant activities. J Sci Food Agric. 2003;83:1403–11.
View ArticleGoogle Scholar

152. Alipour G, Dashti S, Hosseinzadeh H. Review of pharmacological effects of Myrtus communis L. and its active constituents. Phyther Res. 2014;28:1125–36.
View ArticleGoogle Scholar

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-05-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: