Для автоматической дуговой сварки под флюсом используют непокрытую электродную проволоку и флюс для защиты дуги и сварочной ванны от воздуха. Подача и перемещение электродной проволоки механизированы. Автоматизированы процессы зажигания дуги и заварки кратера в конце шва. В процессе автоматической сварки под флюсом (рис. 5.10) дуга 10 горит между проволокой 3 и основным металлом 8. Столб дуги и металлическая ванна жидкого металла 9 со всех сторон плотно закрыты слоем флюса 5 толщиной 30—50 мм. Часть флюса расплавляется, в результате чего вокруг дуги образуется газовая полость, а на поверхности расплавленного металла — ванна жидкого шлака 4,
Для сварки под флюсом характерно глубокое проплавление основного металла. Действие мощной дуги и весьма быстрое движение электрода вдоль заготовки обусловливают оттеснение расплавленного металла в сторону, противоположную направлению сварки. По мере поступательного движения электрода происходит затвердевание металлической и шлаковой
покрытого твердой шлаковой коркой 6. Проволоку подают в дугу и перемещают ее вдоль шва с помощью механизмов подачи 2 и перемещения. Ток к электроду поступает через токопровод 1.
Основные преимущества автоматической сварки под флюсом по сравнению с ручной дуговой сваркой состоят в повышении производительности процесса сварки в 5—20 раз, качества сварных соединений и уменьшении себестоимости 1 м сварного шва. Повышение производительности достигается за счет использования больших сварочных токов (до 2000 А) и непрерывности процесса сварки. Применение непокрытой проволоки позволяет приблизить токопровод на расстояние 30—50 мм от дуги и тем самым устранить опасный разогрев электрода при большой силе тока. Плотная флюсовая защита сварочной ванны предотвращает разбрызгивание и угар расплавленного металла. Увеличение силы тока позволяет сваривать металл большой толщины (до 20 мм) за один проход без разделки кромок. Дуговую сварку под флюсом выполняют сварочными автоматами: сварочными головками или самоходными тракторами, перемещающимися непосредственно по изделию. Назначение сварочных автоматов — подача электродной проволоки в дугу и поддержание постоянного режима сварки в течение всего процесса. Автоматическую сварку под флюсом применяют в серийном и массовом производствах для выполнения длинных прямолинейных и кольцевых швов в нижнем положении на металле толщиной 2—100 мм. Под флюсом сваривают стали различных классов. Автоматическую сварку широко применяют при изготовлении котлов, резервуаров для хранения жидкостей и газов, корпусов судов, мостовых балок и других изделий. Она является одним из основных звеньев автоматических линий для изготовления сварных автомобильных колес и станов для производства сварных прямошовных и спиральных труб.
|
Строение и свойства электрической дуги. Требования к источникам сварочного тока. Напряжение холостого хода для источников постоянного и переменного тока. Внешняя характеристика источника сварочного тока.
Сварочной дугой называется мощный устойчивый стационарный электрический разряд в газовой ионизированной среде. Открытие этого явления было сделано в 1802 г. русским ученым В.В. Петровым. В практическом применении данного явления для получения неразъемных соединений важную роль сыграли русские ученые Н.Н. Бенардос и Н.Г. Славянов.
|
При дуговой сварке электрическая энергия преобразуется в тепловую, которая концентрированно вводится в свариваемые заготовки и оплавляет металл в месте их соединения. Схема строения сварочной дуги постоянного тока приведена на рис. 1.1.
Рис.1.1. Принципиальная схема горения электрической дуги: 1-катодное пятно; 2-катодная зона; 3-столб дуги; 4-ионизированная газовая среда: 5-анодная зона; 6-анодное пятно
В процессе горения дуги происходит разогрев и последующее расплавление металла катода и анода (электрода и свариваемой детали). Образуются катодное и анодное пятна. Из катодного пятна происходит эмиссия электронов, являющаяся причиной начальной ионизации среды в междуговом промежутке. Площадь катодного пятна зависит от силы сварочного тока, материала сварочной проволоки и ряда других факторов.
Электроны и другие заряженные частицы, образующиеся в результате процессов ионизации, создают направленные потоки. Возникает электрическая дуга, включающая в себя три зоны: катодную, анодную и столб дуги.
В столбе дуги создается самая высокая температура порядка 7000 °С. Под влиянием электрического поля электроны и ионы в столбе дуги находятся в движении. Электроны как самые подвижные частицы создают основу потока.
Ионы, обладающие положительным зарядом, под действием электрического поля перемещаются к катоду и образуют катодную область. Температура в катодной зоне достигает 3500 °С, а температура катодного пятна 2500 °С.
|
Электроны и отрицательные ионы перемещаются к аноду; образуется анодная зона, температура которой выше 4500 °С, а анодного пятна примерно 3500 °С. По этой причине анодное пятно больше катодного и при прямой полярности (электрод - минус, деталь - плюс) происходит перегрев детали.
Напряжение электрической дуги Uд складывается из падения напряжения в трех ее составных зонах
Стабильность горения дуги зависит от концентрации заряженных частиц в дуговом промежутке, которая, в свою очередь, определяется процессами ионизации (образование заряженных частиц). Основными механизмами образования заряженных частиц являются: автоэлектронная и термоэлектронная эмиссии, а также ионизация ударом, термическая ионизация, фотоэмиссия и фотоионизация.
Напряжение холостого хода источника сварочного тока должно быть достаточным для легкого зажигания сварочной дуги. Оно должно отвечать требованию