Техника безопасности при выполнении паяльных работ




При пайке деталей используют различные припои и флюсы, которые содержат вредные для здоровья работающих элементы – это свинец, цинк, литий, калий, натрий, кадмий, и др.Эти элементы и их окислы в виде пыли, паров и аэрозолей загразняют воздух в помещении. Поэтому , кроме общей вентиляции , рабочие посты Паяльщиков должны быть оборудованы местными отсосами.

Для защиты рук от попадания на них кислотных флюсов и от ожогов расплавленным припоем следует применять из асбестовой ткани. При пайке методом погружения , во избежание разбрызгивания расплавленного припоя детали необходимо подогревать до температуры ПО…120С.

Промывку деталей от остатков кислотных флюсов следует производить в специальных ваннах. Слив воды из ванны в канализацию допускается только после соответствующей очистки воды.

При работе паяльником обязательно соблюдают следующие правила : ручка электрического паяльника должна быть сухой , не проводящей тока; горячий паяльник укладывают на специальную металлическую подставку; перегретый не охлаждают в жидкости ; запрещено выполнять пайку деталей , в которых находились легковоспламеняющихся материалов , при отсутствии местной вентиляции; тщательно моют руки после работы.

 

Исправление возникших неисправностей.

1)Если на стенд не доходит питание, проверти сетевой кабель.

2)Если не горит какой либо сегмент на индикатор, необходимо снять лицевую панель и заменить светодиод в сегменте на другой используя: пояльник, олова, канифоль и по нужде новый провод, если у вас нет навоков работы с пояльником необходима обратиться к мастеру.

3)При работе с светодиодным электронным табло, если счетчик не откликается на сигналы с пульта дистанционного управления необходимо сделать перезапуск устройства.

 

История создания и развития диодов

Развитие диодов началось в третьей четверти XIX века сразу по двум направлениям: в 1873 году британский учёный Фредерик Гутри открыл принцип действия термионных (вакуумных ламповых с прямым накалом) диодов, в 1874 году германский учёный Карл Фердинанд Браун открыл принцип действия кристаллических (твёрдотельных) диодов.

Принципы работы термионного диода были заново открыты 13 февраля 1880 года Томасом Эдисоном, и затем, в 1883 году, запатентованы (патент США № 307031). Однако дальнейшего развития в работах Эдисона идея не получила. В 1899 году германский учёный Карл Фердинанд Браун запатентовал выпрямитель на кристалле. Джэдиш Чандра Боус развил далее открытие Брауна в устройство применимое для детектирования радио.Около 1900 года Гринлиф Пикард создал первый радиоприёмник на кристаллическом диоде. Первый термионный диод был запатентован в Британии Джоном Амброзом Флемингом.

В конце XIX века устройства подобного рода были известны под именем выпрямителей, и лишь в 1919 году Вильям Генри Иклс ввёл в оборот слово «диод», образованное от греческих корней «di» — два, и «odos» — путь.

Ключевую роль в разработке первых отечественных полупроводниковых диодов в 1930-х годах сыграл советский физик Б. М. Вул.

 

Классификация диодов

 

Диоды бывают электровакуумными (кенотроны), газонаполненными (газотроны, игнитроны, стабилитроны), полупроводниковыми и др. В настоящее время в подавляющем большинстве случаев применяются полупроводниковые диоды.

Рисунок 2.2 – УГО диода

 

Ламповые диоды

Ламповые диоды представляют собой радиолампу с двумя рабочими электродами, один из которых подогревается (проходящим через него током из специальной цепи накала или отдельной нитью накала). Благодаря этому, часть электронов покидает поверхность разогретого электрода (катода) и под действием электрического поля движется к другому электроду — аноду. Если же поле направлено в противоположную сторону, электрическое поле препятствует этим электронам и тока (практически) нет.

Полупроводниковые диоды

Полупроводниковые диоды используют свойство односторонней проводимости p-n перехода — контакта между полупроводниками с разным типом примесной проводимости, либо между полупроводником и металлом (Диод Шоттки).

 

 

Рисунок 2.3 – УГО диод Шоттки

 

Стабилитрон

Стабилитрон препятствует превышению напряжения выше определённого порога на конкретном участке схемы. Может выполнять как защитные так и ограничительные функции, работают они только в цепях постоянного тока. При подключении следует соблюдать полярность. Однотипные стабилитроны можно соединять последовательно для повышения стабилизируемого напряжения или образования делителя напряжений.

 

Рисунок 2.4 – УГО Стабилитрон

 

Варикап

Варикап (по другому емкостной диод) меняет своё сопротивление в зависимости от поданного на него напряжения. Применяется как управляемый конденсатор переменной емкости, например, для настройки высокочастотных колебательных контуров.

Рисунок 2.5 – УГО Варикап

 

Тиристор

Тиристор имеет два устойчивых состояния: 1) закрытое, то есть состояние низкой проводимости, 2) открытое, то есть состояние высокой проводимости. Другими словами он способен под действием сигнала переходить из закрытого состояния в открытое.

Рисунок 2.6 – УГО Тиристор

 

Тиристор имеет три вывода, кроме Анода и Катода еще и управляющий электрод - используется для перевода тиристора во включенное состояние. Современные импортные тиристоры выпускаются и в корпусах ТО-220 и ТО-92.

Тиристоры часто используются в схемах для регулировки мощностей, для плавного пуска двигателей или включения лампочек. Тиристоры позволяют управлять большими токами. У некоторых типов тиристоров максимальный прямой ток достигает 5000 А и более, а значение напряжений в закрытом состоянии до 5 кВ. Мощные силовые тиристоры вида Т143(500-16) применяются в шкафах управления эл.двигателями, частотниках.

Симистор

Симистор используется в системах, питающихся переменным напряжением, его можно представить как два тиристора, которые включены встречно-параллельно. Симистор пропускает ток в обоих направлениях.

Рисунок 2.7 – УГО Симистор

Светодиод

Светодиод излучает свет при пропускании через него электрического тока. Светодиоды применяются в устройствах индикации приборов, в электронных компонентах (оптронах), сотовых телефонах для подсветки дисплея и клавиатуры, мощные светодиоды используют как источник света в фонарях и т.д. Светодиоды бывают разного цвета свечения, RGB и т.д.

Рисунок 2.8 –УГО Светодиод

 

Инфракрасный диод

Инфракрасные светодиоды (сокращенно ИК диоды) излучают свет в инфракрасном диапазоне . Области применения инфракрасных светодиодов это оптические контрольно-измерительные приборы, устройства дистанционного управления, оптронные коммутационные устройства, беспроводные линии связи. Ик диоды обозначаются так же как и светодиоды.

Инфракрасные диоды излучают свет вне видимого диапазона, свечение ИК диода можно увидеть и посмотреть например через камеру сотового телефона, данные диоды так же применяют в камерах видеонаблюдения, особенно на уличных камерах чтобы в темное время суток была видна картинка.

Рисунок 2.9 – Применение инфрокрасных диодов

 

Фотодиод

Фотодиод преобразует свет попавший на его фоточувствительную область, в электрический ток, находит применение в преобразовании света в электрический сигнал.

Фотодиоды (а так же фоторезисторы, фототранзисторы) можно сравнить с солнечными батареями. Обозначаются на схемах так:

Рисунок 2.9 – УГО Фотодиод

 

 

Применение диодов

Диоды широко используются для преобразования переменного тока в постоянный (точнее, в однонаправленный пульсирующий). Диодный выпрямитель или диодный мост (То есть 4 диода для однофазной схемы, 6 для трёхфазной полумостовой схемы или 12 для трёхфазной полномостовой схемы, соединённых между собой по схеме) — основной компонент блоков питания практически всех электронных устройств. Диодный трёхфазный выпрямитель по схеме А. Н. Ларионова на трёх параллельных полумостах применяется в автомобильных генераторах, он преобразует переменный трёхфазный ток генератора в постоянный ток бортовой сети автомобиля. Применение генератора переменного тока в сочетании с диодным выпрямителем вместо генератора постоянного тока с щёточно-коллекторным узлом позволило значительно уменьшить размеры автомобильного генератора и повысить его надёжность.

В некоторых выпрямительных устройствах до сих пор применяются селеновые выпрямители. Это вызвано той особенностью данных выпрямителей, что при превышении предельно допустимого тока, происходит выгорание селена (участками), не приводящее (до определенной степени) ни к потере выпрямительных свойств, ни к короткому замыканию — пробою.

В высоковольтных выпрямителях применяются селеновые высоковольтные столбы из множества последовательно соединённых селеновых выпрямителей и кремниевые высоковольтные столбы из множества последовательно соединённых кремниевых диодов.

Светодиоды

Светодио́д или светоизлучающий диод (СД, СИД, LED англ. Light-emittingdiode) — полупроводниковый прибор с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении. Излучаемый свет лежит в узком диапазоне спектра. Его спектральные характеристики зависят во многом от химического состава использованных в нём полупроводников. Иными словами, кристалл светодиода излучает конкретный цвет (если речь идёт об СД видимого диапазона), в отличие от лампы, излучающей более широкий спектр, и где конкретный цвет отсеивается внешним светофильтром.

В 1907 году Генри Джозеф Раунд впервые открыл и описал электролюминесценцию, обнаруженную им при изучении прохождения тока в паре металл — карбид кремния (карборунд, SiC), и отметил жёлтое, зелёное и оранжевое свечение на катоде.

Эти эксперименты были позже, независимо от Раунда, повторены в 1923 году О. В. Лосевым, который, экспериментируя с выпрямляющим контактом из пары карборунд — стальная проволока, обнаружил в точке контакта двух разнородных материалов слабое свечение — электролюминесценцию полупроводникового перехода (в то время понятия «полупроводниковый переход» ещё не существовало). Это наблюдение было опубликовано, но тогда весомое значение этого наблюдения не было понято и потому не исследовалось в течение многих десятилетий.

Вероятно, первый светодиод, излучающий свет в видимом диапазоне спектра, был изготовлен в 1962 году в Университете Иллинойса группой, которой руководил Ник Холоньяк.

При пропускании электрического тока через p-n переход в прямом направлении, носители заряда — электроны и дырки — рекомбинируют с излучением фотонов (из-за перехода электронов с одного энергетического уровня на другой).

Не все полупроводниковые материалы эффективно испускают свет при рекомбинации. Лучшие излучатели относятся к прямозонным полупроводникам (то есть таким, в которых разрешены прямые оптические переходы зона-зона), типа (например, GaAs или InP) и AIIBVI (например, ZnSe или CdTe). Варьируя состав полупроводников, можно создавать светодиоды для всевозможных длин волн от ультрафиолета (GaN) до среднего инфракрасного диапазона (PbS).

Диоды, сделанные из непрямозонных полупроводников (например, кремния, германия или карбида кремния), свет практически не излучают. Впрочем, в связи с развитием кремниевой технологии, активно ведутся работы по созданию светодиодов на основе кремния. Советский жёлтый светодиод КЛ 101 на основе карбида кремния выпускался ещё в 70-х годах, однако имел очень низкую яркость. В последнее время большие надежды связываются с технологией квантовых точек и фотонных кристаллов.

 

Рисунок 2.10 – Светодиод с пластиковой оболочкой – корпусом

 

 

Характеристики

Вольт-амперная характеристика светодиодов в прямом направлении нелинейна. Диод начинает проводить ток начиная с некоторого порогового напряжения. Это напряжение позволяет достаточно точно определить материал полупроводника.

Современные сверхъяркие светодиоды обладают менее выраженной полупроводимостью, чем обычные диоды. Высокочастотные пульсации в питающей цепи (т. н. «иголки») и выбросы обратного напряжения приводят к ускоренному деградированию кристалла. Скорость деградирования также зависит от питающего тока (нелинейно) и температуры кристалла (нелинейно).

 

Рисунок 2.11 – Современные мощные сверхъяркие светодиоды на теплоотводящей пластине с контактами для монтажа

 

Преимущества

По сравнению с другими электрическими источниками света (преобразователями электроэнергии в электромагнитное излучение видимого диапазона), светодиоды имеют следующие отличия:

¾ Высокая световая отдача. Современные светодиоды сравнялись по этому параметру с натриевыми газоразрядными лампами и металлогалогенными лампами, достигнув 160 люмен на ватт;

¾ Высокая механическая прочность, вибростойкость (отсутствие нити накаливания и иных чувствительных составляющих);

¾ Длительный срок службы — от 30000 до 100000 часов (при работе 8 часов в день — 34 года). Но и он не бесконечен — при длительной работе и/или плохом охлаждении происходит «отравление» кристалла и постепенное падение яркости.

¾ Спектр современных светодиодов бывает различным — от тёплого белого = 2700 К до холодного белого = 6500 К;

¾ Малая инерционность — включаются сразу на полную яркость, в то время как у ртутно-фосфорных (люминесцентных-экономичных) ламп время включения от 1 с до 1 мин, а яркость увеличивается от 30% до 100% за 3-10 минут, в зависимости от температуры окружающей среды;

¾ Количество циклов включения-выключения не оказывают существенного влияния на срок службы светодиодов (в отличие от традиционных источников света — ламп накаливания, газоразрядных ламп);

¾ Различный угол излучения — от 15 до 180 градусов;

¾ Низкая стоимость индикаторных светодиодов;

¾ Безопасность — не требуются высокие напряжения, низкая температура светодиода или арматуры, обычно не выше 60 °C;

¾ Нечувствительность к низким и очень низким температурам. Однако, высокие температуры противопоказаны светодиоду, как и любым полупроводникам.

¾ Экологичность — отсутствие ртути, фосфора и ультрафиолетового излучения в отличие от люминесцентных ламп.

Применение светодиодов:

¾ В уличном, промышленном, бытовом освещении (в том числе светодиодная лента);

¾ В качестве индикаторов — как в виде одиночных светодиодов (например, индикатор включения на панели прибора), так и в виде цифрового или буквенно-цифрового табло (например, цифры на часах);

¾ Массив светодиодов используется в больших уличных экранах, в бегущих строках. Такие массивы часто называют светодиодными кластерами или просто кластерами;

¾ В оптопарах;

¾ Мощные светодиоды используются как источник света в фонарях и светофорах;

¾ Светодиоды используются в качестве источников модулированного оптического излучения (передача сигнала по оптоволокну, пульты ДУ, светотелефоны, интернет);

¾ В подсветке ЖК-экранов (мобильные телефоны, мониторы, телевизоры и т. д.);

¾ В играх, игрушках, значках, USB-устройствах и прочее;

¾ В светодиодных дорожных знаках;

¾ В гибких ПВХ световых шнурах Дюралайт.

Органические светодиоды — OLED

Многослойные тонкоплёночные структуры, изготовленные из органических соединений, которые эффективно излучают свет при пропускании через них электрического тока. Основное применение OLED находит при создании устройств отображения информации (дисплеев). Предполагается, что производство таких дисплеев будет гораздо дешевле, чем жидкокристаллических.

Главная проблема для OLED — время непрерывной работы, которое должно быть не меньше 15 тыс. часов. Одна из проблем, которая в настоящее время препятствует широкому распространению этой технологии, состоит в том, что «красный» OLED и «зелёный» OLED могут непрерывно работать на десятки тысяч часов дольше, чем «синий» OLED. Это визуально искажает изображение, причём время качественного показа неприемлемо для коммерчески жизнеспособного устройства. Хотя сегодня «синий» OLED все-таки добрался до отметки в 17,5 тыс. часов непрерывной работы.

Дисплеи из органических светодиодов применяются в последних моделях сотовых телефонов, GPS-навигаторах, для создания приборов ночного видения.

Рисунок 2.12 – OLED дисплей

 

 





©2015-2017 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.

Обратная связь

ТОП 5 активных страниц!