Становление геологии как науки




Введение

 

Геология - это наука мыслителей! Мышление пронизывает геологию на всех этапах работы - от первичного наблюдения до обобщений глобального масштаба. И мысль в геологии ценнее любых "фактов", ибо и они зависят от мысли...Разум - это ум, подчинённый чувству прекрасного"

Н. Мартьянов

 

Геология - это целая отрасль науки. Она объединяет большое количество наук. Геология, не смотря на корень гео в названии, не ограничивается изучением Земли. Солнечная Система изучается такими разделами геологии: космохимия, космология, космическая геология и планетология.

Планету Земля можно разделить на оболочки. Внешняя, газовая оболочка Земли – атмосфера. Жидкая оболочка планеты – гидросфера состоит из океана, системы рек и озер и подводных вод. Населённая жизнью оболочка Земли – биосфера. Большая часть Земли находится в твёрдом состоянии, и именно твёрдая Земля является предметом изучения комплекса геологических наук. Однако все оболочки интенсивно взаимодействуют друг с другом и их нельзя рассматривать по отдельности. Но и Землю целиком нельзя рассматривать как замкнутую систему. Земля получает из окружающего космоса значительные количества вещества и энергии. Изучение воздействия космоса на Землю – пограничное поле между геологией, астрономией и космологией. Геология, помимо прочего, наука историческая, и важнейшей её задачей является определение последовательности геологических событий.

Геологи всегда работали в мире относительного времени. Точность, с которой можно определить положение некого события на шкале относительного времени, прямо зависит от ее дробности (т.е. числа составляющих шкалу событий) и полноты (события должны распределяться по шкале более или менее равномерно, не оставляя «пустот»). Поэтому геологи видели свою задачу в том, чтобы совершенствовать в указанных направлениях шкалу относительного времени – палеонтологическую летопись.

Изучение исторического развития планеты необходимо для прогнозов дальнейшего существования человеческой цивилизации, так как глобальные биосферные кризисы, сопровождаемые массовыми вымираниями организмов происходили, по геологическим данным со значительной регулярностью. Это позволяет говорить о цикличности (периодичности) геологических процессов, а значит, принципиальной предсказуемости угрожающих человечеству явлений.

Цикличность заключается в том, что геологические явления и процессы, сменяя друг друга во времени, образуют цепь событий, в которой каждое звено – это законченный цикл. Например, глобальный цикл – формирование суперматерика Пангея и его раскол. Таких циклов в истории земной коры было 2, сейчас протекает третий. В свою очередь каждый из таких глобальных циклов состоит из нескольких тектонических циклов (или этапов) развития земной коры. Для человека глобальные геологические циклы могут быть опасны, но, не имея возможности предотвратить катастрофу, можно ее предсказать. Геология позволяет человеку узнать его прошлое, и в этом прошлом человек ищет ответы на вопросы будущего.

 


Становление геологии как науки

 

Геология, как наука прошла большой серьёзный путь в своём развитии. До XVIII века геология являлась отделом минералогии (пассивное описание минералов и пород), или физической географии. Основной задачей этой науки считалось разъяснение вопроса по происхождению земли. Геология, как наука в понимании, близком к современному, оформилась в конце XVIII века, когда разрозненный запас геологических сведений был систематизирован в России М. Ломоносовым, в Германии А. Вернером и другими. Термин «геология» был введен в 1657 г. ученым Эмольтом.

Первые упоминания о геологии можно найти в древних памятниках Месопотамии и Египта (второе-третье тысячелетие до нашей эры). В Китае сохранились рукописи 7-4 тысячелетия до нашей эры, где даны первые описания минералов и горных пород. В 11-13 веке до н.э. многие восточные ученые занимались описанием минералов: таджикский философ-врачеватель Абу Ибн-Сина (Авиценна), узбек Аль-Бируни, азербайджанский ученый Мухамед Насеридин (Туси). В 1021-1023 годах в «Книге Исцеления» Авицена пытается объяснить процессы породообразования и предлагает первую классификацию минералов и горных пород. В 1048 г. Альберти в своей «Книге Сводок для познавания драгоценностей» описал более 100 минералов и горных пород.

С давних пор в каменоломнях и шахтах, а иногда просто на земной поверхности люди находили странные образования, напоминавшие то листья растений, то кости животных, то раковины моллюсков. Эти таинственные формы были похожи на настоящие листья и кости, но откуда глубоко под землей могли появиться останки организмов?

Одни ученые считали, что загадочные ископаемые, так поразительно напоминающие растения и животных, представляют собой окаменевшие «соки земли»; другие полагали, что это результат «игры природы»; третьи выдвигали предположение об их самопроизвольном зарождении. Но примерно в середине XVIII века все эти взгляды уступили место так называемой дилювиальной теории, или теории потопа (по-латыни потоп - дилювий). Согласно этой теории все окаменелости рассматривались как останки животных и растений, погибших во время всемирного потопа.

Дилювиальная теория была значительным шагом вперед по сравнению со всеми существовавшими до нее предположениями. Теперь к ископаемым стали относиться как к останкам подлинных, действительно живших организмов, их начали собирать, и тщательно описывать. Эти описания сопровождались рисунками. Впервые в геологической литературе появились атласы с изображением целых комплексов ископаемых растений и скелетов животных. Зарождалась новая наука, которую позже назвали палеонтологией, что по-гречески означает «учение о древних организмах».

Сравнивая окаменелости с современными животными и растениями, ученые делали первые попытки установить условия, в которых жили погибшие организмы. Ископаемые не позволяли установить год потопа, в результате которого погибли обитатели Земли, но некоторые признаки окаменелостей, казалось, давали возможность судить хотя бы о сезоне, когда могло произойти это событие.

В 1702 г. английский естествоиспытатель Джон Вудворд издал книгу «Естественная история Земли», где описал, в частности, ископаемые орехи. Вудворд обратил внимание на то, что эти орехи неспелые. Следовательно, они были погребены в конце весны, когда плоды уже образовались, но созреть еще не успели. К такому же выводу пришел швейцарский коллега Вудворда – Иоганн Якоб Шойхцер, исследовавший растительные остатки, которые он принял за незрелые колосья. Шойхцер тоже предполагал, что потоп произошел приблизительно в мае.

Но относительно времени начала потопа среди ученых не было единого мнения. Каждый исследователь называл новые сроки. Вот, например, что писал в 1758 г. Дж. Парсонс, изучавший ископаемые плоды с острова Шеппи в устье Темзы: «Если эти плоды, которые я имею честь положить перед Вами, являются додилювиальными, то можно представить, как это делал доктор Вудворд, что они в некоторой степени указывают время года, когда произошел Потоп. Вудворд полагал, что Потоп имел место в мае, но его мнение встречает возражения... Найденные окаменевшие плоды столь совершенны, что заставляют предполагать, что они были вполне зрелыми, когда были захоронены в тех местах, в которых они найдены. Это убеждает нас в том, что Потоп произошел ближе к августу». Некоторые были еще более категоричны. Так, вышеупомянутый ирландский архиепископ Ашер в своем труде «Анналы мира», ссылаясь на находки ископаемых, решительно заявил, что потоп начался в воскресенье 7 декабря – ни раньше, ни позже.

Но по мере того как росло количество собранных ископаемых остатков, становилось все более очевидным, что многие ископаемые животные и растения совершенно не похожи на существующих ныне. С учетом этого стали высказываться предположения, что среди окаменелостей встречаются не только предшественники современных организмов, но и «допотопные» группы, погибшие во время катастрофы и не имеющие аналогов в современном растительном и животном мире. Кроме того, предлагалось различать «туземные» формы, погребенные там, где они обитали, и остатки «экзотических» организмов, которые жили в других областях и были перенесены к местам их захоронения во время потопа

Уже в 1760 г. толща земных отложений была подразделена на три последовательно сменяющие друг друга группы горных пород: первичную, вторичную и третичную. Сопоставляя находки ископаемых организмов с этой первой грубой шкалой, исследователи убеждались, что отличия древних животных и растений от современных тем заметнее, чем глубже залегают пласты, заключающие в себе окаменелости. Но связать разрозненные наблюдения в единую непротиворечивую гипотезу долгое время не удавалось.

В 1796 г. в графстве Сомерсетшир на юго-западе Англии работал на прокладке канала землемер Уильям Смит. Наблюдая различные слои горных пород, он заметил, что в каждом встречаются «органические ископаемые», присущие только этому слою. В одних пластах есть многочисленные раковины, в других – отпечатки растений; некоторые же толщи вообще лишены ископаемых остатков. Смит стал собирать окаменелости из каждого слоя. Изучив их, он составил первую таблицу последовательности геологических отложений Англии. А через несколько лет, выпустив в свет «Геологическую карту Англии, Уэльса и части Шотландии», Смит приступил к изданию своего исторического труда под названием «Пласты, определяемые по их органическим ископаемым». В предисловии он писал, что окаменелости дают ключ к познанию подпочвенных слоев, и подчеркивал, что находить и распознавать их могут даже люди совершенно неграмотные.

После работ Смита уже не оставалось сомнений в том, что животный и растительный мир на протяжении истории Земли неоднократно изменялся. Этот факт невозможно было объяснить с точки зрения дилювиальной теории, утверждавшей, что и теперь на Земле обитают те же виды животных и растений, которые жили на ней до потопа. Гипотеза о всемирном потопе утратила свою ценность. Становилось все яснее, что чем древнее организмы, тем существеннее разница между ними и современными животными.

Попытку истолковать это явление сделал французский ученый, основатель сравнительной палеонтологии Жорж Кювье. Он высказал мысль, что в былые времена на нашей планете неоднократно происходили катаклизмы – колоссальные катастрофы, в результате которых гибло большинство обитателей Земли. И после каждого такого переворота животный мир возрождался, но уже в ином составе. Теория катастроф сыграла в геологии и палеонтологии большую роль. Она утвердила идею, что история Земли распадается на ряд этапов, каждому из которых свойственны определенные формы животных и растений.

Признание значения окаменелостей для определения возраста земных слоев заметно оживило развитие всех областей геологической науки и существенно способствовало их прогрессу. Изучение ископаемых остатков подтвердило, что до потопа существовал протяженный ряд многократно сменявших друг друга сообществ организмов. Палеонтологические материалы стали широко использовать при составлении геологических карт и поисках месторождений минерального сырья.

Против теории катаклизмов выступил французский естествоиспытатель Жан Батист Ламарк. С начала XIX века один за другим выходят в свет его основополагающие труды: «Гидрогеология», «Естественная история растений», «Философия зоологии» и многотомная «Естественная история беспозвоночных животных». Намного опередив свою эпоху, Ламарк создал первое стройное учение о развитии органического мира, обосновал новую систематику животных, уточнил принципы ботаники, впервые развил эволюционные идеи в биологии и высказал мысль, что и сам человек является результатом исторического развития жизни.

Современники не смогли в полной мере оценить значение работ Ламарка. Но провозглашенные им воззрения и его огромный научный авторитет оказали определенное влияние даже на тех исследователей, которые продолжали оставаться убежденными катастрофистами. Следствием этого стали многочисленные смелые попытки установить закономерности появления различных групп организмов во времени.

В 1820 г. немецкий ученый Каспар Штернберг подразделил историю растительного мира Земли на три больших периода. Восемь лет спустя, французский геолог и палеоботаник Александр Броньяр установил существование четырех периодов. Данные этих исследователей, занимавшихся изучением древней флоры, начали сопоставляться с материалами, полученными в разных странах специалистами по вымершим беспозвоночным. Это было рождение шкалы относительного - геологического - возраста земных слоев.

Теория катастроф продолжала оставаться главенствующей в науке на протяжении нескольких десятилетий. Положение ее пошатнулось только в середине прошлого века, когда в 1859 г. вышел в свет замечательный труд английского естествоиспытателя Чарлза Дарвина «Происхождение видов путем естественного отбора, или Сохранение благоприятствуемых пород в борьбе за жизнь».

Выдвинутая Дарвином теория эволюции, согласно которой в облике животного и растительного мира происходит бесконечный ряд изменений, отражающих взаимоотношения организмов и изменения среды, где они живут, дала новый толчок развитию различных областей палеонтологии. Десятки людей во многих странах мира начинают интересоваться окаменелостями. Отовсюду поступают сообщения о новых находках ископаемых организмов.

С конца XIX века - начала XX в. наука геология расширила свои горизонты, в том числе и благодаря революционным идеям Владимира Ивановича Вернадского и Александра Евгеньевича Ферсмана, которые определили геологию, как науку о строении земли, её происхождении и развитии, которая основывается на изучении геологических процессов и земной коры в целом. По словам Вернадского, XX век, является периодом ломки коренных естественнонаучных представлений, когда история науки сама наталкивает человека на правильный путь решения многих актуальных проблем.

В.И. Вернадский (1863-1945) – выдающийся русский естествоиспытатель, минеролог и кристаллограф, основоположник геохимии и биогеохимии, организатор большого числа научных учреждений. Кафедра минералогии Московского университета, возглавляемая В.И. Вернадским сыграла исключительную роль в развитии науки. В своих исследованиях и лекциях В.И. Вернадский выдвинул на первый план с одной стороны выяснение химической природы минералов, с другой вопросы их происхождения их изменений и преобразований в различных зонах земной коры. Прежнему описательному направлению минералогии он противопоставлял генетическую минералогию, или химию земной коры. Изучая минералы, как продукты химических процессов, протекающих в земной коре, Владимир Иванович естественным образом перешёл к истории отдельных химических элементов, или геохимии.

Геология является комплексной наукой, в ее состав входят многочисленные, зачастую разноплановые, дисциплины.

Химический состав Земли, процессы, концентрирующие и распыляющие химические элементы в различных сферах Земли, являются предметом геохимии. Земную кору – верхнюю твердую оболочку Земли слагают различные генетические типы горных пород (магматические, осадочные и метаморфические), состоящие из определенного сочетания минералов, в состав которых входят различные химические элементы. Изучая такую иерархию – химические элементы - минералы - горные породы, можно судить о строении земной коры в различных структурных зонах. Ниже рассматриваются все указанные части вещественного состава земной коры.

Химические изменения в земной коре определяются преимущественно геохимической историей главных породообразующих элементов, содержание которых составляет свыше 1%. Вычисления среднего химического состава земной коры проводились многими исследователями как за рубежом (Ф. Кларк, Г.С. Вашингтон, В.М. Гольдшмидт, Ф.Тейлор, В. Мейсон и др.), так и в Советском Союзе (В.И. Вернадский, А.Е. Ферсман, А.П. Виноградов, А.А. Ярошевский и др.).

Изучение вещественного состава литосферы, как и других процессов, производится различными методами. В первую очередь это прямые геологические методы – непосредственное изучение горных пород в естественных обнажениях на берегах рек, озер, морей, разрезов шахт, рудников, кернов буровых скважин. Все это ограничено относительно небольшими глубинами. Наиболее глубокая, пока единственная в мире, Кольская скважина достигла всего лишь 12,5 км. Но более глубокие горизонты земной коры и прилежащей части верхней мантии также доступны непосредственному изучению. Этому способствуют извержения вулканов, доносящие до нас обломки пород верхней мантии, заключенные в излившейся магме – лавовых потоках. Такая же картина наблюдается в алмазоносных трубках взрыва, глубина возникновения которых соответствует 150-200 км.

Помимо указанных прямых методов в изучении веществ литосферы широко применяются оптические методы и другие, физические и химические исследования – рентгеноструктурные, спектрографические и др. При этом широко используются математические методы на основе ЭВМ для оценки достоверности химических и спектральных анализов, построения рациональных классификаций горных пород и минералов и др. В последние десятилетия применяются, в том числе и с помощью ЭВМ, экспериментальные методы, позволяющие моделировать геологические процессы; искусственно получать различные минералы, горные породы; воссоздавать огромные давления и температуры и непосредственно наблюдать за поведением вещества в этих условиях; прогнозировать движение литосферных плит и даже, в какой-то степени, представить облик поверхности нашей планеты в будущие миллионы лет.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: