Расчет устойчивости низового откоса




 

Проверка устойчивости низового откоса плотины осуществляется согласно СНиП 2.06.05–84.

Расчеты устойчивости откосов грунтовых плотин всех классов следует выполнять для круглоцилиндрических поверхностей скольжения. При использовании метода круглоцилиндрических поверхностей скольжения выполняют следующее:

1). Строят область нахождения центров поверхностей скольжения;

2). Проводят круглоцилиндрические поверхности сдвига;

3). Вычисляют значения коэффициентов устойчивости откоса для множества поверхностей сдвига по формуле:

Куст = Rудер. / Fсдвиг, (28)

 

где Rудер, Fсдвиг - равнодействующие моментов удерживающих сил и сдвигающих сил.

4). Делают вывод об устойчивости откоса и правильности принятого его заложения. Откос считается устойчивым, если:

 

Куст  Кн * Кс / Км, (29)

 

где Кн – коэффициент надёжности по классу сооружения, для плотин 3-го класса Кн = 1.15;

Кс - коэффициент сочетания нагрузок, для основного сочетания равен 1;

Км - коэффициент равный 0.95.

Для построения области нахождения центра поверхности сдвига предложено несколько методов. Один из наиболее простых метод В.В. Фандеева, в котором рекомендуется центры круглоцилиндрических поверхностей сдвига располагать в криволинейном четырёхугольнике. Этот четырёхугольник образуется следующими линиями, проведёнными из середины откоса: вертикалью и прямой под углом 85˚ к откосу, а также двумя дугами радиусов:

 

и , (30)

 

где К1 и К2 - коэффициенты внутреннего и внешнего радиусов, которые определяются в зависимости от заложения откоса.

При коэффициенте заложения низового откоса m2 = 2.5, К1 = 0,875 и К2 = 2,025

Т. о.: R1 = 0,875 * 15,0 = 13,1 м; R2 = 2,025 * 15,0 = 30,3 м.

Поверхность сдвига на поперечном профиле плотины представляет собой дугу окружности радиуса , проведённую таким образом, чтобы она пересекала гребень плотины и захватывала часть основания. Проведём окружность радиусом R = 30 м.

Значение коэффициента устойчивости откоса для кривой сдвига вычисляем для 1 м длины плотины в такой последовательности:

(1) Область, ограниченную кривой сдвига и внешним очертанием плотины (массив обрушения), разбиваем вертикальными прямыми на отсеки. Ширина отсеков равна b. При расчёте «вручную» удобно величину b принимать равной 0,1R, центр нулевого отсека размещать под центром кривой сдвига, а остальные отсеки нумеровать с положительными знаками при расположении их вверх по откосу и с отрицательными – вниз к подошве плотины, считая от нулевого отсека.

(2) Для каждого отсека вычисляем siną и cos ą, где ą – угол наклона подошвы отсека к горизонту. При b = 0,1*R значение siną = 0,1*N, где N – порядковый номер отсека с учётом его знака; .

Рассчитаем величину b:

Далее считаем величины siną, cos ą и вносим в таблицу 2.2. Порядковый номер N определяем по чертежу (рис. 5).

(3) Определяем средние высоты составных частей каждого отсека, имеющих различные плотности (рис. 5): – слоя грунта тела плотины при естественной влажности; - слоя грунта тела плотины при насыщении водой; - слоя грунта основания при насыщении водой; - слоя воды (на рисунке не показан). В качестве средних высот принимаем высоты частей, замеренные по чертежу в середине отсека. При наличии по краям массива обрушения неполных отсеков их эквивалентная средняя высота:

где - площадь неполного отсека, определяемая графически. (31)

Определим площади неполных отсеков 10 и –7:

ω 10 = 3,75 м2; ω -7 = 0,5 м2.

Отсюда определяем средние высоты отсеков:

h 10 = ω 10 / b = 3,75 / 3,0 = 1,25 м; h -7 = ω -7 / b = 0,5 / 3 = 0,16 м.

(4) Вычисляем плотность грунта каждого слоя по формулам:

 

; ; , (32)

 

где - плотность грунта тела плотины при естественной влажности;

- плотность грунта тела плотины при насыщении его водой;

- плотность грунта основания при насыщении водой;

- пористость грунта;

- коэффициент, зависящий от влажности грунта – при влажности, равной 12…18%,

- плотность воды;

- удельная плотность частиц грунта тела плотины;

- удельная плотность частиц грунта основания плотины.

Физико-механические характеристики грунта следует устанавливать по данным натурных исследований, но так как они отсутствуют, то для предварительных расчётов используем данные таблицы 2.1.

Пользуясь таблицей, указанной в исходных данных, вычислим плотность грунта каждого слоя:

поскольку в основании залегают те же грунты, из которых состоит тело плотины.
Табл. 2.1. Характеристики грунта тела плотины

Грунт Удельная плотность частиц, т/м3   Пористость Удельное сцепление грунта, кПа. Угол внутреннего трения грунта, град.
естествен- ной влажности насыщен- ного водой естествен- ной влажности насыщен- ного водой
Глина 2,74 0,35…0,50 3,0…6,0 2,0…3,5 20…26 12…16
Супесь 2,70 0,3…0,45 0,5…1,3 0,3…0,5 25…30 20…23
Суглинок 2,71 0,35…0,45 2,0…4,0 1,5…3,0 21…27 15…20

 

(5) Определяем приведённые высоты отсеков:

 

(33)

 

где - глубина слоя воды над отсеком.

Т. к. и , то уравнение можно представить в следующем виде:

 

(34)

 

Величины и определяем графически по рисунку и вносим в таблицу 2.2. В этой же таблице рассчитываем величину


Табл. 2.2. Определение действующих сил

Номер отсека   м   м м
-1 -2 -3 -4 -5 -6 -7 1,00 0,90 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 -0,10 -0,20 -0,30 -0,40 -0,50 -0,60 -0,70 0,44 0,50 0,71 0,80 0,86 0,92 0,95 0,98 0,99 1,00 0,99 0,98 0,95 0,92 0,86 0,80 0,71 3,0 5,0 6,5 7,5 6,6 5,4 4,3 3,1 2,9 2,2 2,0 1,5 1,3 0,8 0,0 0,0 0,0 0,0 0,0 5,0 6,5 7,5 8,0 8,3 8,6 9,5 9,7 10,5 10,0 9,5 9,0 8,4 7,0 5,5 3,2 2,5 3,0 5,0 7,3 9,5 10,5 11,3 11,0 10,9 9,6 9,2 9,0 8,4 7,5 6,2 4,2 2,9 1,7 1,3 2,4 3,5 5,8 7,5 7,8 8,6 8,1 7,3 7,0 6,9 0,0 -0,8 -0,7 -0,8 -0,9 -0,9 -0,7 -0,3   0,1 1,7 2,7 5,3 5,8 6,1 5,7 5,2 5,1 4,8 4,3 2,4 2,9 2,6 1,8 1,7 0,6 0,7
      128,7   59,8   43,9

 

(6) Устанавливаем силу трения, возникающую на подошве всего массива обрушения, по следующей формуле:

 

(35)

 

Угол внутреннего трения зависит от вида грунта и его влажности в зоне кривой сдвига, при отсутствии фактических данных его принимают по таблице 2.1. Значения угла указаны в таблице 2.2.

Величина рассчитана для каждого отсека также в таблице 2.2.

Рассчитаем силу трения :

.

(7) Подобным образом вычислим касательную составляющую веса массива обрушения:

 

. (36)

 

Величина рассчитана в табл. 2.2 (для каждого отсека).

Рассчитываем силу :

(8) Определим силу сцепления, возникающую на подошве массива обрушения по следующей зависимости:

 

(37)

 

где: с1 - удельное сцепление грунта тела плотины при естественной влажности;

с2 - удельное сцепление грунта тела плотины при насыщении водой;

с3 - удельное сцепление грунта основания, насыщенного водой;

l1 – длина дуги AB;

l2 - длина дуги BC;

l3 - длина дуги CD.

Длины дуг кривой сдвига вычисляются по общей формуле:

 

(38)

 

где – центральный угол круглоцилиндрической поверхности сдвига, опирающийся на дугу l.

Углы измеряются по чертежу (рис. 5):

, , .

Подставляем измеренные углы в формулу:

; ; .

 

Рассчитаем силу сцепления :

.

(9) Рассчитываем фильтрационную силу:

 

, (39)

 

где - площадь фигуры KBCDE:

. (40)

- средний градиент фильтрационного потока

 

, (41)

 

где - падение депрессионной кривой в пределах массива обрушения;

- расстояние, на котором произошло падение депрессионной кривой на .

Определяем эти величины по рисунку 5.

, .

.

Подставим найденные величины в формулу

.

(10) Вычисляем значение коэффициента устойчивости откоса:

 

, (42)

где - плечо фильтрационной силы, равное расстоянию от центра кривой сдвига до центра тяжести площади , которое измеряют по чертежу. (рис. 5).

Вывод об устойчивости откоса: окончательно можно сделать вывод, что значение, найденное по формуле превышает нормативное, а, значит, обрушение откоса по рассматриваемой поверхности сдвига невозможно.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-07-29 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: