В социально-экономических приоритетах государства особое место должно занимать развитие наукоемких отраслей производства с высоким уровнем добавленной стоимости. Для лидеров мировой экономики на современном этапе, таким направлением, безусловно, является нанотехнология.
В основе научно-технического прорыва на наноуровне, форсируемого промышленно развитыми странами, лежит использование новых, ранее не известных свойств и функциональных возможностей материальных систем при переходе к наномасштабам, определяемых особенностями процессов переноса и распределения зарядов, энергии, массы и информации при наноструктурировании.
Важнейший фактор - геометрический размер и приставке "нано", входящей в ряд основных, наиболее часто используемых в официальных документах, понятий: нанотехнология, наноматериалы, наносистемы.
Первоначально обратим внимание на исходные смысловые значения наиболее часто употребляемых приставок, идентифицирующих характеристические и геометрические размеры изучаемых объектов:
микро - (от греч. mikros - малый);
нано - (от греч. nannos - карлик).
Применительно к индустрии наносистем границы геометрического фактора в отношении возникновения новых нетрадиционных свойств, не присущих макро- и микросистемам, формально определены от единиц до 100 нм. Однако вполне очевидно, что некоторый характеристический размер, идентифицирующий изучаемый объект по геометрическому параметру (толщина пленки, диаметр кластера или нанотрубки), должен рассматриваться не просто как абсолютная величина, а в отношении к определенным фундаментальным параметрам материалов, имеющим аналогичную метрическую размерность. Особенно сложно определить границы геометрического фактора применительно к биоорганическим объектам, обладающим многообразием связей и конформаций. Поэтому приставка "нано" скорее особое обобщенное отражение объектов исследований, прогнозируемых явлений, эффектов и способов их описания, чем просто характеристика протяженности базового структурного элемента.
|
Рассмотрим ряд базовых понятий с приставкой "нано", наиболее полно отражающих именно проявление функционально-системных свойств, а не только чисто геометрических особенностей (параметров) объектов.
Наносистема - материальный объект в виде упорядоченных или самоупорядоченных, связанных между собой элементов с нанометрическими характеристическими размерами, кооперация которых обеспечивает возникновение у объекта новых свойств, проявляющихся в виде квантово-размерных, синергетически-кооперативных, гигантских эффектов и других явлений и процессов, связанных с проявлением наномасштабных факторов.
Наноматериалы - вещества и композиции веществ, представляющие собой искусственно или естественно упорядоченную или неупорядоченную систему базовых элементов с нанометрическими характеристическими размерами и особым проявлением физического и (или) химического взаимодействий при кооперации наноразмерных элементов, обеспечивающих возникновение у материалов и систем совокупности ранее неизвестных механических, химических, электрофизических, оптических, теплофизических и других свойств, определяемых проявлением наномасштабных факторов.
|
Нанотехнология - совокупность методов и способов синтеза, сборки, структуре- и формообразования, нанесения, удаления и модифицирования материалов, включая систему знаний, навыков, умений, аппаратурное, материаловедческое, метрологическое, информационное обеспечение процессов и технологических операций, направленных на создание материалов и систем с новыми свойствами, обусловленными проявлением наномасштабных факторов.
Нанодиагностика - совокупность специализированных методов исследований, направленных на изучение структурных, морфолого-топологических, механических, электрофизических, оптических, биологических характеристик наноматериалов и наносистем, анализ наноколичеств вещества, измерение метрических параметров с наноточностью.
Нанонаука - система знаний, основанная на описании, объяснении и предсказании свойств материальных объектов с нанометрическими характеристическими размерами или систем более высокого метрического уровня, упорядоченных или самоупорядоченных на основе наноразмерных элементов. Нанотехника - машины, механизмы, приборы, устройства, материалы, созданные с использованием новых свойств и функциональных возможностей систем при переходе к наномасштабам и обладающие ранее недостижимыми массогабаритными и энергетическими показателями, технико-экономическими параметрами и функциональными возможностями.
Таблица 1. Характеристика "Индустрии наносистем"
Направление развития | Функциональные особенности |
Наноматериалы | |
• 0-мерные: квантовые точки • 1-мерные: квантовые нити, нанотрубки, нановолокна, линейные полимеры • 2-мерные: квантовые ямы, сверхрешетки, пленки Ленгмюра-Блоджетт, биомембраны • 3-мерные: нанокомпозиты, фуллерены, фуллероиды, астралены, мицеллы, биоорганические полимеры | • Легкость • Прочность • Стойкость • Эластичность • Биосовместимость • Селективность • Энергоемкость • Память |
Нанотехнология | |
• Атомно-молекулярное наслаивание • Атомно-молекулярная сборка и самосборка • Атомно-молекулярное модифицирование и удаление • Атомно-молекулярная селекция • Неравновесный синтез | • Наноточность • Нанолокализация • Нанопозиционирование • Наноизбирательность • Нанокатализ • Самоформирование • Самоорганизация |
Нанодиагностика | |
• Атомно-зондовая микроскопия • Электронная микроскопия и спектроскопия • Масс-спектрометрия • Оптическая спектроскопия • Дифрактометрия • Эллипсометрия • Электрофорез • Хроматография • Парамагнитный резонанс | • Наноточность • Наночувствительность • Наноколичество |
|
Выделен ряд постулатов, определяющих характерные признаки и направления развития наноматериалов, нанотехнологий и наносистем, представленных в табл. 2.
Таблица 2. Признаки направления развития нанотехнологий
Наноматериалы Макро- и микрообъекты - интеграция искусственно или естественно упорядоченных (самоупорядоченных) наносистем | Нанотехнологии Наноточность, наноизбирательность и самоорганизация в условиях синтеза макро- и микрообъектов | Наносистемы Макросистемные свойства - проявление кооперативного взаимодействия и избирательности границ раздела наносистем |
От макрокристаллов к композициям на-нокристаллов и субмолекулярным комплексам | От микро- к наноточности (нанолокали-зации, нанопозиционированию, наноиз-бирательности) | От микро- к наномасштабированию |
От искусственно упорядоченных систем к самоупорядоченным | От организации к самоформированию, самосборке (самоорганизации) | От классических размерных эффектов к квантовым |
От статического упорядочения к динамическому (неравновесному) | От квазиравновесных процессов к неравновесным | От изолированных консервативных систем к открытым кооперативным |
Таким образом, фундаментальным базисом индустрии наносистем являются новые ранее неизвестные свойства материалов и композиций, возникающие при переходе к объектам, представляющим собой интеграцию искусственно или естественно упорядоченных наносистем. Это обусловлено особым проявлением в нанокомпозициях и ансамблях субмолекулярных комплексов кооперативно-синергетических явлений и процессов, квантово-размерных и "гигантских" эффектов.
Индустрия наносистем - интегрированный комплекс, включающий: оборудование; материалы; программные средства; систему знаний; технологическую, метрологическую, информационную, организационно-экономическую культуру и кадровый потенциал, обеспечивающие производство наукоемкой продукции, основанной на использовании новых нетрадиционных свойств материалов и систем при переходе к наномасштабам.
Таблица 3. Основные постулаты индустрии наносистем
Направления развития | Названия проектов |
Наноматериалы | • Нанокомпозиционные материалы со специальными механическими свойствами для сверхпрочных, сверхэластичных, сверхлегких конструкций. • Нанокомпозиционные и нанодисперсные материалы для высокоэффективной сепарации и избирательного катализа. • Нанокомпозиционные материалы с особой устойчивостью к экстремальным факторам для термически-, химически- и радиационностойких конструкций •Нанокомпозиционные материалы, обладающие "интеллектуальными" свойствами, включая: адаптивность, ассоциативность, память • Наноструктуры и нанокомпозиции для электронных и фотонных информационных систем. • Нанокомпозиционные биоорганические материалы для медицины и биотехнологии. • Специальные нанокомпозиционные материалы с низкой эффективной отражающей или сверхвысокой поглощающей способностью в СВЧ и оптическом диапазонах длин волн. • Специальные нанодисперсные материалы с максимально эффективным энерговыделением, в том числе, импульсным. |
Нанотехнологии | • Машиностроительные нанотехнологии (механическая и корпускулярная обработка с наноточностью) • Физико-химические нанотехнологии (атомно-молекулярная химическая сборка неорганических и органических веществ). • Атомно-зондовые нанотехнологии (нанозондовый сверхлокальный синтез и модифицирование) • Биомедицинские нанотехнологии (биочипы и биокластеры; сверхлокальная наноизбирательная диагностика, терапия, хирургия; генная инженерия) • Аппаратно-методическое обеспечение чистоты и микроклимата в индустрии наносистем. |
Нанодиагностика | • Экспресс-методы контроля химического состава и геометрии нанообъектов. • Экспресс-методы регистрации электрических, магнитных и акустических полей нанообъектов, контроль их физических и химических свойств. |
Наносистемы (наноустройства) | • Нанохимические компоненты (сорбенты, катализаторы, насосы, реакторы) для высокоэффективной очистки, избирательного сверхскоростного высокопроизводительного синтеза, атомно-молекулярной инженерии • Наноэлектронные компоненты (элементная база) для сверхинтегрированных сверхмощных сверхскоростных систем генерации, хранения, передачи и обработки информации. • Нанооптические компоненты (элементная база - излучатели, фотоприемники, преобразователи) для энергетически эффективной светотехники, систем сверхскоростной "сверхплотной" высокопо-мехозащищенной передачи и обработки информации. • Микро- и наноинструмент для процессов атомно-молекулярной инженерии. |
Реализация представленного в табл. 3 перечня базовых научно-технических проектов по-видимому не решит проблемы широкого промышленного развития индустрии наносистем, но обеспечит для России:
· сохранение и развитие отечественного научного и промышленного потенциалов высоких технологий;
· сохранение и развитие кадрового потенциала, интеграцию и эффективное использование высококвалифицированных специалистов;
· интенсификацию междисциплинарных исследований и разработок, обеспечивающих научнотехнические прорывы по ключевым направлениям научно-технического прогресса;
· сохранение паритета российской научно-образовательной культуры в области высоких технологий с ведущими зарубежными странами.
При организации и реализации работ в области индустрии наносистем, наряду с постановкой чисто экономической задачи - повышения эффективности производства на основе опережающего развития высокотехнологичных отраслей, необходимо решать и социальную задачу. Это связано с особой ролью интеллектуального фактора в долгосрочной перспективе развития России как независимого государства.
Доставка лекарств при помощи наносистем - перспективное направление в современной фармацевтике, в рамках которого возможно получение оригинальных препаратов известных субстанций, имеющих заметные преимущества перед традиционными. В данной курсовой работе мною рассмотренынаносистемы для интраназальной доставки ЛП.