Гагарин производил впечатление хитрого, деревенского себе на уме мужичка, ему быстро надоела опека и тогдашнего начальника ЦПК врача Карпова (удалось коллективными усилиями его вытолкнуть), и заменившего его позже Н. Ф. Кузнецова, и Каманина (конечно, особенно Каманина, но его космонавты еще долгие годы побаивались). Не совсем было понятно, зачем ему власть. Может, причина крылась в понимании, что шумиха вокруг его полета не соответствует содержанию его дальнейшей жизни и работы.
Герман Титов тоже был неглуп, но внешне производил впечатление любующегося собою человека в роли героя. Он то и дело попадал в какие-то дурацкие истории. Однажды, после одной из первых поездок за границу, приехал к С.П. с рассказом о поездке и подарил ему часы, которые якобы привез специально ему в подарок. Тот завелся: наверняка Титов часы не покупал (да, наверное, и денег у него для этого не было), а просто передарил свой подарок по принципу на тебе, боже, что мне не гоже. И С.П. отдал часы службе безопасности: проверить, нет ли какой диверсии против Главного конструктора. «Есть — радиация»! Стрелки часов были покрыты фосфором и, естественно, радиометры показали наличие радиации. «Покушение на Главного конструктора!» Раззвонили, где только можно. Хотя в газеты ничего не просочилось. Да и покушения, конечно, никакого не было. А бедного Германа совсем затюкали. Ему, конечно, хотелось еще участвовать в полетах, но конкуренты по любому поводу поднимали шум, да и начальство не жаловало эмоционального и любящего выпить космонавта. А герой, помимо всего прочего, должен был обладать способностью (и демонстрировать это) пить, как слон!
Павел Попович производил на меня впечатление симпатичного, добродушного и в то же время хитрого и весьма прагматичного хохла.
|
Андриян Николаев мне нравился своим простодушием и своеобразным обаянием. Брак его с Валентиной Терешковой, по моему мнению, был неудачным. Хотя ни он, ни она на эту тему со мной никогда не откровенничали. Был осторожен — в конфликты с начальством никогда не вступал.
Валерий Быковский — один из немногих, кто не чувствовал дискомфорт первых дней невесомости. Но, возможно, это было не достоинством, а недостатком организма. Не брезговал неприличными поручениями начальства. Брался за сомнительную работу. Например, одно время был кем-то вроде директора Дома советско-германской дружбы в Восточном Берлине.
Терешковой тяжело достались ее трое суток полета. Это было слышно по голосу на связи, хотя слова произносились по протоколу. После полета и для нее началась обычная для космонавтов тех лет круговерть с приемами, поездками по всему миру и бесконечными выступлениями. Ее стали активно использовать для пропаганды и представительства везде, где только можно. Тут ее вины не вижу. Но когда она стала председателем Союза советских обществ дружбы и культурной связи с зарубежными странами — это уже было неприлично. Тем, кто хотел понимать, было совершенно очевидно, что эта организация являлась крышей для нашей разведки и для финансирования наших агентов в других странах. Профессиональные разведчики — это другое дело — они сами выбрали профессию. Как-то спросил ее: зачем она занялась этим неблаговидным делом. «Да что ты говоришь такие вещи! Да разве можно?!» — возразила она мне в ответ. А в общем, она симпатичный мне человек.
|
Еще несколько замечаний по поводу иностранных космонавтов на наших станциях и кораблях.
Международное сотрудничество в космических полетах с самого начала, еще с программы «Союз — Аполлон», приняло характер циркового представления и некоторого виртуального действа по имитации деятельности. Хотя на эту имитацию тратились вполне реальные деньги, время и производственные усилия (надо было изготовлять, готовить и запускать ракеты, пилотируемые и грузовые корабли, орбитальные станции). Но внешне это выглядело так, как будто все участники этого шоу договорились: будем только имитировать деятельность и много шуметь о новых шагах вперед в космосе, об укреплении дружбы народов и разрядке. Даже осуществили в ознаменование окончания нашей позорной авантюры в Афганистане полет с участием афганского космонавта, которому опасно было возвращаться на родину. Он и сейчас перебивается где-то на чужбине.
Ничего серьезного в этих совместных полетах с космонавтами социалистических и других стран не делалось. Насколько я понимаю, также действовали и американцы, но у них это выглядело не так откровенно и бессмысленно. Да и откуда появиться смыслу? Инженеры от этого дела отстранились: своих забот хватает. А поскольку затевалось сотрудничество как политическое представление, то и решающий голос в определении программы полета, целей, инструментов принадлежал людям, которые над нашими проблемами и не задумывались и не интересовались ими и, естественно, не могли предложить хоть что-то разумное. Их хватало только на демонстрацию предусмотрительности. Например, бедного болгарского космонавта заставили сменить свою фамилию Какалов на Иванов: кому-то показалось, что его фамилия по-русски звучит неприлично! Примерно то же самое произошло с Гермашевским, фамилия которого по-польски может звучать и Гермашевский и Хермашевский. Но в нашей прессе, во всех сообщениях и по ТВ его объявляли только Гермашевским. Согласовывали ли это с ним (а может быть, даже с польским правительством), не знаю, но, скорее всего, дожали его бедного. Кто этим занимался? Наверное, замполит Главкома ВВС. Гермашевский, как мне казалось (может быть и зря), с тех пор выглядел несколько смущенно, но расстраиваться не стоило, так как тут же родилась веселая частушка:
|
Космонавту ПНР заменили х… на герр,
Потому что в ПНР много х… но мало герр!
Некоторые совместные полеты вспоминаются, в основном, из-за неприятностей, которые, к счастью, окончились благополучно и выглядели несколько комично. Например, мы много и долго воевали с ВВС за равноправие при распределении ролей и круга обязанностей между членами экипажа. Спорили по вопросу, кому быть командиром экипажа. «Конечно, командиром экипажа может быть только профессиональный командир, то есть только военный», — утверждали в ВВС. Обратите внимание: такая же картина и у американцев. Почему такое совпадение позиций наших ВВС и НАСА? Может быть, и тех, и других больше всего беспокоил вопрос не профессионализма, а дисциплины? Вопрос безусловного выполнения команд с Земли? Ну а мы, естественно, утверждали, что старшим на борту должен быть более знающий, более опытный и, главное, лучше понимающий то, что нужно делать на борту орбитальной станции, то есть инженер. На нашей стороне была и накопленная статистика: во время полета, как правило, быстро обнаруживался фактический лидер экипажа, и в большинстве случаев это были наши бортинженеры.
В этой войне Алексей Елисеев вдрызг рассорился со своим старым приятелем Владимиром Шаталовым (еще со времен их совместного полета). Но как-то в союзе с начальством (легко понять, что самые высокие начальники в нашей стране были все же люди не военные и они, как правило, принимали в таких спорах нашу сторону) удалось сподвигнуть ВВС на экспериментальный компромисс: в двух полетах: в 1979-м и 1980 году командирами экипажей были наши ребята — Рукавишников и Кубасов. И, как нарочно, при возвращении из полета Рукавишникова и болгарского космонавта был какой-то сбой в автоматике, с которым Николай Рукавишников успешно справился. Но ВВС все равно подняли крик: «А если бы сбой оказался более серьезным?» При возвращении Кубасова с венгерским космонавтом Фаркашем, произошел отказ в системе включения двигателей мягкой посадки спускаемого аппарата, и они приземлились со скоростью около 8 метров в секунду (около 30 километров в час). Но надо учитывать, что корпус спускаемого аппарата значительно более жесткий, чем у автомобиля, и это, естественно, привело к весьма ощутимому удару о землю. Ничего страшного не произошло, они даже испугаться не успели и отделались только синяками. Но опять был дружный вопль ВВС и смех остальных: не может же отказ в бортовой автоматике произойти из-за фамилии командира экипажа.
Союз
Работы по «Союзу» начались летом 1959 года в разгар работы над «Востоком». В цехах приступили к изготовлению первых корпусов спускаемых аппаратов и приборных отсеков кораблей «Восток», на полную мощность работали конструкторские отделы, готовилась техническая документация, электрики заканчивали выпуск электрических схем. Это было прекрасно, но ведь надо было думать и о завтрашнем дне. Темп развития работ в космической технике тогда был настолько велик, что если заранее не подготовиться, не выбрать следующую цель, можно вместо авангарда оказаться в арьергарде. Куда идти дальше? Шустин предлагал сразу переключаться на разработку марсианской экспедиции. Вперед так вперед! — тут в части «передовитости» цели никак не промахнемся! Более прагматичный Молодцов предлагал ограничиться разработкой высадки на Луне. А Феоктистов (ну что с начальства взять) предлагал в качестве следующей цели выбрать орбитальные станции: «А зачем лететь на Луну? И тем более на Марс?»
Шли споры. Единого мнения достичь не удавалось. Но в одном мы все-таки сходились: прежде чем решать любую из новых задач, нужно научиться сближать корабли и космические аппараты на орбите и соединять их между собой. Без этого бессмысленно даже думать о сколько-нибудь сложных космических предприятиях. Исходя из этого я сформировал группу для исследования проблемы сближения и стыковки на орбите космических аппаратов во главе с Шустиным. Она должна была выявить технические сложности этой проблемы, наметить варианты ее решения, найти организации, которые смогли бы разработать нужную аппаратуру. Как сближаться, в принципе — понятно. Нужно уметь определять относительное положение сближающихся кораблей, его изменение и управлять движением. Но как измерять параметры относительного движения сближающихся аппаратов? Какое нужно оборудование? Как осуществлять причаливание и соединение кораблей и их коммуникаций? Эти вопросы и определяли задачи первоначального поиска.
Работы над проблемой сближения оказались вполне продуктивными, и к началу 1962 года был получен основной теоретический задел. На его базе мы приступили к проектированию. Многим у нас эта работа казалась не очень перспективной. Шустин вначале был обижен и даже оскорблен тем, что ему пришлось отойти от активной работы над «Востоком» и заняться проблемами встречи на орбите. Поначалу представлялось, что важно решить саму проблему сближения и стыковки. Быстрее это можно было сделать, используя для отработки оборудования и самого процесса беспилотные корабли «Восток». На этом этапе в обсуждениях приняло участие и начальство. Весной 1962 года Бушуев на одном из совещаний, по-видимому, посоветовавшись предварительно с Королевым, выступил с предложением создать корабль для облета Луны и на этом же корабле отработать средства сближения.
Кому и зачем нужно облетать Луну? Опять эти дурацкие приоритетные задачи!.. Мы спорили, как могли. Не хотелось терять как минимум два-три года на новый проект, преследующий нелепую цель. За это время, как нам казалось, можно было бы вполне решить задачу встречи на «Востоках», но С.П. высказался за новую разработку, поддержал Бушуева, и решение было принято.
Конечно, определенная логика в постановке задачи по созданию нового корабля была. «Восток» проектировался как самый первый корабль и делался очень быстро. Мы сделали его за три года и на далекую перспективу не рассчитывали. А главное, система спасения экипажа корабля в случае аварии носителя была неудовлетворительной. Начальство это соображение в расчет не принимало, но мы-то должны были его учитывать. Так что нужно было создавать новый корабль. Решили, что он должен быть универсальным, предназначенным для решения самых различных космических задач: и для орбитальных автономных полетов, и для отработки стыковки, и даже (если приспичит) для облета Луны. Одновременно хотелось уменьшить рассеивание точек посадки кораблей при возвращении с орбиты и снизить перегрузки, действующие на экипаж при спуске на Землю.
Очень скоро выяснилось, что сложность нового корабля на порядок, а то и на два выше сложности «Востока», и времени на создание и отработку уйдет намного больше. Так и получилось. Только в 1969 году «Союз» начал летать как следует. Хотя надо было заниматься и проектом в целом, и компоновкой, и весовыми расчетами, и составом оборудования, но больше всего внимания пришлось уделять самой задаче сближения и стыковки. Трудились над ней, взаимно дополняя и критикуя друг друга, самые разные специалисты: по теории движения тел в центральном поле тяготения, управленцы, логики, компоновщики. Разумеется, и мне как проектанту и бывшему специалисту по теории движения хотелось внести свой вклад в решение задачи.
Корабли на орбитах в отличие, скажем, от самолетов, не могут резко менять направление и скорость своего полета — в них действуют законы движения в центральном поле тяготения. Существенны ограничения по энергетике, в данном случае ограничения по топливу, расходуемому на изменения величины и направления скорости аппарата. Поэтому надо было искать способ наиболее экономичного, эффективного расходования бортовых запасов топлива при сближении, а также приемлемых средств и методов управления процессом сближения. Между теоретически оптимальным и практически осуществимым для нас решением всех вопросов могло возникнуть существенное различие. Итак, необходимо было выбрать метод сближения, то есть те параметры относительного положения и сближения двух машин, которые нужно было измерять и корректировать последовательность действий по ориентации кораблей и включению их двигателей для коррекции относительного движения. Наиболее приемлемым представлялся метод «свободных траекторий».
Этот метод активно отстаивали наши проектанты: его идеолог Борис Иванович Столповский и Шустин. При использовании этого метода измеряются параметры относительного движения объектов, по которым, в свою очередь, вычисляется необходимое по величине и направлению изменение скорости, нужное для «попадания» (с малой относительной скоростью) аппарата («активного») в другой («пассивный»). Конечно, с одного раза попасть не удастся вследствие неточностей в измерениях, ориентации и отработке двигательного импульса. Следовательно, эту операцию придется проделывать два — четыре раза. Важно, чтобы процесс сходился. В результате можно сблизиться настолько, что останется лишь произвести причаливание одного аппарата к другому. Метод этот естественный и правильный, и именно он теперь реализуется во время сближения кораблей и аппаратов на орбитах. Но важная особенность этого метода в том, что необходимые вычисления в ходе сближения достаточно сложны, и без электронной вычислительной машины на борту их провести практически невозможно.
Работы над небольшими вычислительными машинами в нашей стране уже велись. Говорили, что где-то в Питере (тогда еще Ленинграде), в КБ-2 чехи Старое и Берг работают над созданием малых электронных вычислительных машин на основе неизвестно откуда взятых новых технологий. Поехал посмотрел. Показали мне достаточно компактную машину УМ-2. Претенциозное название, но «2» — вроде бы и неплохо: все-таки уже не первая. Мне показалось, что авторы мало похожи на чехов, да и технологиями этими они не очень владели. На вопросы об объеме постоянной и оперативной памяти, о быстродействии, о частоте сбоев, о надежности четких ответов от них не получил. Чья же это технология? Не краденая ли? Похоже, что машины сырые и ненадежные. А нам нужна была надежная машина, резервированная, с автоматическим распознаванием отказов и с автоматическим переходом на резервный комплект. Ничего этого не было и в помине.
Как же быть? И вот родилась идея! Использовать метод параллельного сближения, менее экономичный, но зато более простой, против которого сначала активно возражали и мои товарищи проектанты, и управленцы. Метод этот известен из теории управления зенитными ракетами. Суть его в том, что двигатель активного объекта при своих включениях гасит, сводит к нулю угловую скорость линии визирования, то есть линию, соединяющую два сближающихся объекта, и обеспечивает регулирование скорости при движении вдоль этой линии. Замерить составляющие относительной скорости (одна перпендикулярна линии визирования, другая — вдоль нее), как и расстояние между объектами, сравнительно нетрудно с помощью радиолокатора с антенной наведения, стабилизируемой с помощью гироскопа. Удалось нам найти и организацию, где могли сделать нужную систему измерений параметров относительного движения.
Главным конструктором этой системы был выдающийся инженер Евгений Васильевич Кандауров. Вычисления, проводимые в процессе сближения при использовании этого метода, оказались достаточно просты, с ними должны были справиться небольшие аналоговые счетно-решающие устройства, которые мы могли изготовить сами. Метод параллельного сближения решено было применить, начиная с расстояния между кораблями около 20 километров, а до этого осуществлять сближение на основе наземных радиоизмерений. Радиолокатор со стабилизируемой с помощью гироскопов антенной должен измерять угловую скорость линии визирования, дальность и радиальную скорость, а также выдавать управляющие сигналы на взаимную ориентацию сближающихся аппаратов. Сразу было решено автоматизировать весь процесс сближения и стыковки и в то же время предусмотреть возможность ручного управления процессом причаливания с расстояний менее 200–400 метров.
Далее предстояло решить задачу причаливания и создать стыковочный узел. И здесь было много вариантов, вплоть до самых фантастических. Специалисты по системам управления во главе с В. П. Легостаевым предложили, например, установить на одном из кораблей (пассивном) большую петлю, а на другом — крючок, который бы цеплял за петлю и затем удерживал корабль. Точность сближения, действительно, требовалась при этом существенно меньшая (это и нравилось управленцам). Но мы считали это предложение не просто технически неубедительным, неоправданным, но и несерьезным. Однако легостаевцы настаивали на своей идее. Обсуждалась она едва ли не на каждом совещании по проблеме стыковки. Вместо того чтобы заниматься делом и согласовывать схему работы и параметры системы, мы тратили время на пустые споры, уводящие в сторону. Мы называли эту петлю удавкой и вынуждены были доказывать очевидные вещи: ведь если принять удавку, то нужно придумать, сделать и отработать механизм раскрытия петли, создать специальные лебедки для стягивания объектов, стабилизировать и взаимно ориентировать аппараты во время стягивания и, в конце концов, все равно сделать стыковочный узел для обеспечения жесткого соединения. К тому же реализация этой идеи сложна и с точки зрения динамики. Значительно проще и надежнее осуществлять сближение кораблей вплоть до контакта, а затем провести захват и жесткое соединение с помощью стыковочного узла. Из наших оценок процесса сближения на заключительном этапе следовало, что процесс можно закончить попаданием в стыковочный узел с диаметром не более метра, что и подтвердилось впоследствии. Споры между проектантами и управленцами по этому поводу шли долго и были достаточно острыми. «Да удавитесь вы сами на вашей удавке, а мы не будем!» Выиграли это сражение мы. Но они давиться не стали.
Еще в 1961 году у нас прорабатывался узел жесткой стыковки по схеме штырь — конус с винтовой системой стяжки. Конкретный вариант конструкции штыря предложил, кажется в 1962 году, ветеран нашего конструкторского бюро Александр Коновалов. Это был тогда уже не молодой, но очень изобретательный человек, не имевший инженерного диплома. После того как эту схему исследовали специалисты по динамике работы механизмов, к ее окончательной разработке приступила группа конструкторов во главе с В. С. Сыромятниковым.
Намного труднее на этот раз было с весом, хотя теперь мы исходили из существенно большей грузоподъемности ракеты-носителя — 6,5 вместо 4,5 тонн, так как к этому времени была создана более мощная третья ступень ракеты-носителя.
Новый корабль должен был не только осуществлять сближение и стыковку, но и позволять летать двум-трем космонавтам в течение нескольких недель (предел «Востока» — десять дней), а в условиях совместной работы со станцией (мы, естественно, намеревались со временем превратить этот корабль в транспортное средство для обслуживания орбитальных станций) — до нескольких месяцев. Хотелось существенно улучшить условия работы, в том числе — проведения наблюдений и экспериментов, создать более комфортные условия жизни экипажу (оборудовать на борту отдельный туалет и т. д.), а также усовершенствовать спуск и приземление.
Наиболее трудной представлялась задача создания и отработки средств управления процессами сближения и причаливания, механической и электрической стыковки, а также маршевых и координатных двигателей, обеспечивающих процессы сближения и стыковки, систем ориентации и управления спуском с использованием аэродинамической подъемной силы и мягкой посадки.
На «Востоке» спускаемый аппарат имел форму сферы, которая при движении в атмосфере не может иметь аэродинамической подъемной силы, и поэтому спуск его идет по довольно крутой траектории, по мере снижения все быстрее растет плотность атмосферы, и в результате при входе в плотные слои атмосферы перегрузки, действующие на космонавтов, возрастают до 8–10 единиц. Космонавты воспринимают эти перегрузки как увеличение своего веса, то есть при спуске с перегрузкой десять единиц они ощущают свой вес в десять раз большим, чем на земле. Для космонавтов, недолго пробывших на орбите, это не страшно. Но при длительных полетах ослабленному невесомостью организму космонавта, рассуждали мы, большие перегрузки наверняка противопоказаны. Если у корабля есть хотя бы небольшая подъемная сила, еще лучше — регулируемая, то корабль сможем вести в атмосфере по более пологой траектории, он будет тормозиться медленнее, перегрузки снизятся. Кроме того, регулирование подъемной силы позволяет менять крутизну спуска, и, следовательно, можно выбирать точку приземления и осуществлять посадку с точностью до нескольких десятков километров, а затем, может быть, и более высокой. Поэтому пришлось искать новую форму спускаемого аппарата, которая обеспечивала бы возможность не только торможения, но и создания хотя бы небольшой аэродинамической подъемной силы.
Этой проблемой еще во время работ над «Востоком» занялись наши оппоненты по выбору формы и расчету тепловой защиты спускаемого аппарата «Востока» — специалисты по аэродинамике и теплообмену во главе с Андреем Решетиным, очень энергичным человеком, решительным и инициативным инженером, способным искать и находить новые и в то же время достаточно прагматичные решения. Изучив возможные варианты, они пришли к заключению, что наиболее выгодно, исходя из наших возможностей по массе и по размерам, использовать способность любого несферического тела развивать подъемную силу при определенных углах атаки.
Говоря о «Востоке», я уже упоминал различные формы тел, оптимальных с точки зрения объема, веса, теплозащиты и подъемной силы. На этот раз все эти формы были исследованы заново, и выбор пал на усеченный конус с небольшим, в несколько градусов, углом раскрытия конуса, нижний и верхний обрезы которого закрыты сферическими сегментами, летящий нижним (большим) основанием вперед. Что то вроде автомобильной фары. Такая форма, если сместить центр масс аппарата от оси симметрии, позволяет при движении в атмосфере получить аэродинамическую подъемную силу, действующую в плоскости, проходящей через центр масс и ось симметрии аппарата. Спускаемые аппараты всех американских кораблей также имели форму обратного конуса: у «Меркурия» и «Джемини» с углом раскрытия около 55 градусов, «Аполлона» — более 60-ти, — а у «Союза» — всего 14 градусов. У «Аполлона» аэродинамическое качество было несколько выше. Но, с другой стороны, у «Союза» получался больший объем при том же диаметре аппарата, проще решалась задача центровки и размещения оборудования, и мы смогли уложиться в меньшие размеры.
Итак, спуск корабля должен стать управляемым.
Управление положением точки приземления достигалось изменением вертикальной составляющей подъемной силы спускаемого аппарата за счет поворота его вокруг продольной оси, так как при этом вместе с корпусом при повороте его вокруг продольной оси поворачивается и вектор аэродинамической подъемной силы. Максимальные перегрузки при спуске, по расчетам, должны были составлять 3–4 единицы (у «Востока» — 8–10).
Система посадки включала парашюты и твердотопливные двигатели, установленные прямо на корпусе спускаемого аппарата, которые, включаясь на высоте 1–2 километра, должны были гасить скорость примерно до 4 метров в секунду.
В «Востоке» и во всех американских космических кораблях спускаемые аппараты располагались в головной части комплекса носитель-корабль. И это понятно. В случае аварии ракеты при такой схеме легче отделить аппарат с космонавтами и увести его от ракеты. А в «Союзе» впереди спускаемого аппарата располагается еще орбитальный отсек. Тогда мы много думали и спорили над этой компоновкой. И вот какие возникли доводы в пользу такой, в общем-то, не очень удобной в случае аварийного спасения компоновки. Все корабли, созданные до «Союза», были рассчитаны на сравнительно кратковременные полеты, до двух недель. В этом случае космонавты (два-три человека), могут потерпеть друг друга в едином помещении, однако комфорта при этом, мягко говоря, нет. Попробуйте втроем сесть в бочку диаметром два метра, большая часть объема которой занята оборудованием, и жить в ней безвылазно недельку: и работать, и есть, и спать, тут же, разумеется, должен быть и туалет.
Мы решили сделать жилую часть «Союза» двухкомнатной. Один отсек — спускаемый аппарат, в котором должны находиться космонавты на участках выведения на орбиту и спуска на Землю. Другой — орбитальный, для работы на орбите. Здесь же туалет. Естественно, орбитальному отсеку не нужна тепловая защита — он отделится перед входом в атмосферу одновременно с приборно-агрегатным отсеком.
Конечно, двухкомнатная квартира удобнее, но ведь так сложнее устроить аварийное спасение. Почему бы орбитальный отсек не разместить между спускаемым аппаратом и приборно-агрегатным отсеком? Ведь если спускаемый аппарат разместить впереди, система аварийного спасения легко устанавливается прямо на спускаемый аппарат. Но в этом случае возникает необходимость сделать переходной люк-лаз в лобовом теплозащитном экране, а это приводит к всевозможным техническим и технологическим сложностям. Например, космонавтам пришлось бы лезть под кресла для перехода в орбитальный отсек. Пусть кресла будут откидными, но дело еще в том, что именно здесь, возле лобового экрана, в целях обеспечения необходимой (достаточно передней) центровки аппарата должна располагаться основная масса оборудования. И свободного объема в этом месте быть не должно, и перевернуть спускаемый аппарат нельзя — тогда и стыковочное устройство будет в лобовом теплозащитном экране. И потом, если спускаемый аппарат перевернуть, космонавты на старте будут не лежать в креслах, а висеть на ремнях, и на участке выведения на орбиту четырехкратные перегрузки будут действовать не в самом благоприятном направлении: от спины — к груди. Сделать поворотные кресла? — понадобятся специальные механизмы и, главное, потребуется дополнительное пространство. Можно не размещать космонавтов в креслах вниз животом, а, например, подвесить их в специальных ложементах. Но все это неудобно.
Рассматривались другие варианты. И в конце концов пришли к решению: спускаемый аппарат нужно располагать теплозащитным экраном вниз, и между орбитальным и приборно-агрегатным отсеками. Конечно, при этом космонавтам будет трудно визуально наблюдать за сближением и причаливанием кораблей — ведь впереди орбитальный отсек. Поэтому решили применить перископ. Обзор через перископ хуже, но работа с ним все же особой сложности не представляет. Обычное дело: хочешь иметь преимущества — плати недостатками.
Для спасения космонавтов при аварии на участке выведения приняли решение отрывать спускаемый аппарат вместе с орбитальным отсеком от остальной части корабля и ракеты, с последующим их разделением. Но в этом решении имелась одна сложность: в случае аварии для увода от носителя пришлось бы тянуть корабль за орбитальный отсек, что привело бы к необходимости делать этот отсек неоправданно прочным (с точки зрения величины нагрузок, действующих при нормальном полете), а, следовательно, тяжелее. Поэтому решили установить двигатели системы спасения на головном обтекателе, механизмы которого должны были при аварии подхватывать корабль в месте соединения орбитального отсека со спускаемым аппаратом и тянуть оба блока вверх, а потом, после ухода от аварийного носителя, они должны были разделяться.
Читатель вправе недоумевать: зачем так много технических подробностей? Кому это может быть интересно? Понятно — почему. Во-первых, хочется проиллюстрировать сам процесс работы. Но есть и во-вторых: одновременно это иллюстрация нашей полной неподготовленности к генерированию достаточно логически стройных и смелых решений. Как бы сейчас поступил с решением только что названных чисто технических проблем? К орбитальной станции надо было летать без орбитального отсека, спускаемый аппарат со стыковочным узлом располагать сверху. Для автономного полета лететь с орбитальным отсеком, располагаемым под спускаемым аппаратом между ним и приборно-агрегатным отсеком. В этом случае орбитальный отсек должен быть снабжен упрощенным стыковочным узлом, который используется после выведения корабля на орбиту, когда спускаемый аппарат с помощью простейшего механизма отводится от орбитального отсека, разворачивается на 180 градусов и уже через стыковочный узел соединяется с орбитальным отсеком. После этого экипаж может работать и в спускаемом аппарате, и в орбитальном отсеке. В этом варианте можно было бы получить дополнительные лимиты массы для транспортного варианта (а он должен был рано или поздно стать основным), несколько увеличить его размер и обойти ряд других трудностей. То есть в данном случае решением проблемы был бы отказ от надуманной универсальности. Попытка найти универсальное решение — это попытка убить одним выстрелом двух зайцев. Соблазнительно, конечно, но во что это обойдется такой выстрел? В нашем случае задача универсальности явно была надуманной: мы нечетко сформулировали задачи работы. Наверное, можно было предложить и более эффективные варианты. Работа проектанта и состоит в том, чтобы найти оптимальное решение. Так что проект «Союза» на самом деле был отнюдь не совершенным. Хотя он и эксплуатируется уже более тридцати лет. Просто спорщики мы были более активные.