Ионно-лучевая литография




Основана на использовании ионов гелия для экспонирования поверхности пластин, покрытых резистом.

Существуют:

сканирующая ИЛЛ (разрешающая способность – 0,3¸0,03мкм);

проекционная ИЛЛ с (разрешающая способность – 0,5мкм);

 

Для формирования рисунка топологии ИС возможно воздействие на пленку электронного, ионного и лазерного пучка с высокой плотностью энергии, достаточной для термического испарения материала.Для этого необходимы плотность мощности больше >106 Вт/см2 и время @ 1мкс. Применение ограничено возможным возникновением дефектов из-за механического напряжения и ударных волн.

 

Для сравнения эффективности методов литографии используются обобщенные оценки. В качестве критерия выбран показатель качества, определяемый как:

Производительность

(1+0,15´плотность дефектов) ´ стоимость оборудования ´ (ширина линий)

 

Сравнение эффективности методов литографии приведено в таблице 1.

Таблица 1

Метод литографии Мин. ширина линии, мкм Плот-ность дефектов на 1 см Производитель-ность, пластин/ч Стоимость оборудования, отн. ед. Эффектив- ность ´ 10
Контактная фотолитография   2,5      
Проекционная фотолитография          
Проекционная фотолитография с применением коротковолнового УФ-излучения          
Проекционная фотолитография с использованием повторителей          
Электронолитография 0,5 0,5      
Рентгенолитография 0,3        
Ионно-лучевая литография 0,5 -   - -

Травление

1. Химическое травление – химическая реакция жидкого травителя с кремниевой пластиной с последующим образованием растворимого соединения. Процесс состоит из следующих стадий:

1) диффузия реагента к поверхности;

2) адсорбция реагента;

3) поверхностная химическая реакция;

4) десорбция продуктов реакции;

5) диффузия продуктов реакции от поверхности;

 

Пример реакции для изотропного травления кремния:

Si + 4HNO3 ® SiO2 +4NO3 +2H2O

SiO2 + 4HF ® SiF4­ + 2H2O

Для большей равномерности травления ванну с раствором и пластиной кремния вращают в наклонном положении (динамическое травление) или вводят в ванну ультразвуковой вибратор.

 

Для травления кремния используют анизотропное и изотропное травление. Изотропное травление происходит во всех направления с приблизительно одинаковой скоростью. Для травление используются фосфорная, азотная и уксусная кислоты.

Анизотропное травление основано на том, что скорость химической реакции зависит от кристаллографического направления: минимальная скорость травления в направлении [111], а максимальная – в [100] (скорость травления в направлении [100] в 600 раз больше чем в направлении [111]). В качестве анизотропного травителя используются калиевая кислота и вода.

При использовании анизотропного травления скорость зависит от кристаллографического направления и боковые стенки лунок приобретают рельеф или огранку, углы под которыми вытравливаются боковые стенки лунок строго определены. плоскость [111] является как бы непроницаемой для травителя, что дает возможность при использовании маски избежать подтравливания.

Эпитаксия

Эпитаксия – это ориентированный рост полупроводниковых слоёв на полупроводниковой подложке, при котором кристаллографическая ориентация повторяет ориентацию подложки.

Если подложка и плёнка – одно и тоже вещество то процесс автоэпитаксиальный, иначе гетероэпитаксиальный.

Методы этого наращивания делят на прямые и косвенные.

1. Прямые – частицы полупроводника переносятся без промежуточных химических реакций (испарение, сублимация, реактивное распыление).

2. Косвенные – полупроводниковые плёнки получают путём разложения паров полупроводниковых соединений (методы восстановления в H2 хлоридов, бромидов кремния, а также метод разложения органических соединений кремния).

Недостаток прямого метода – сложность точного дозирования примеси в плёнке. Поэтому чаще используют косвенный метод - восстановление из хлоридов кремния SiCl4

 

Рис. 12. Схема установки используемой для восстановления из хлоридов кремния

 

1. Загружаются пластины Si в реакционную камеру (пластины обработаны)

2. Продувка H2

3. Заполнение HCl для стравливания SiО2

4. Нагрев камеры до 12000 и подача SiCl4 + H2, происходит реакция восстановления SiCl4 + H2= SiCl2+2HCl­

Скорость роста порядка 0,5-5 микрон в минуту. Толщина плёнки 10-20 микрон. В процессе выращивания возможно легирование В2Н6 или РН3, создающего дырочную (р) или электронную (n) проводимость.

 

 

Скорость роста пленки зависит от температуры в камере, кристаллографической ориентации кристалла в подложке (быстрее в [110], медленнее в [100]), от скорости потока газа-носителя, концентрации SiCl4 в H2, равномерности потока газа из поверхности кремния.

При невысоких температурах и больших содержаниях SiCl4 в H2 образуются рыхлые аморфные слои кремния, при повышении температуры структура кремния ухудшается и появляется поликремний.

Для всех процессов требуется высокая степень чистоты исходных элементов. Поддержание определенного технологического режима позволяет получить постоянство параметров пленки кремния в пределах 5¸10%.

В процессе выращивания слоя кремния возможно легирование соединений бора B206 (диборан) – получается р-тип кремния или фосфора PH3 (фосфин) – получается n-тип кремния, задающих дырочную или электронную проводимость.

 


Легирование

В современной технологии микроэлектроники процесс легирования является одним из базовых процессов. Степень интеграции ИС увеличивается за счет совершенствования методов локального легирования и разрешающей способности методов литографии.

 

Методы легирования можно разделить на группы:

1. Высокотемпературная диффузия.

1) в замкнутой системе

2) в открытой системе

3) из твёрдой фазы на поверхности

2. Ионная имплантация

1) внедрение ионов

а) температурная обработка

3. Радиационностимулированная диффузия

1) обработка частицами высокой энергии

2) обработка частицами низкой энергии

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-07-22 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: