Тело более или менее крупного животного представляет для микроорганизмов целый мир с множеством экологических ниш. В естественных условиях организм любого животного населен множеством микроорганизмов. Среди них могут быть случайные формы, но для многих видов тело животного является основным или единственным местом их обитания. Характер и механизмы взаимодействий микроорганизмов с макроорганизмом многообразны и играют решающую роль в жизни и эволюции многих видов микроорганизмов. Для животного микроорганизмы важный экологический фактор, определяющий многие стороны его эволюционных изменений.
С современных позиций нормальную микрофлору рассматривают как совокупность микробиоценозов, занимающих многочисленные экологические ниши на коже и слизистых всех открытых внешней среде полостей организма. В значительной части микрофлора одинакова у всех животных в сравниваемых биотопах, но в составе микробиоценоза имеются индивидуальные различия. Аутомикрофлора здорового животного остается постоянной и поддерживается гомеостазом. Ткани и органы, не сообщающиеся с внешней средой, стерильны. Организм и его нормальная микрофлора составляют единую экологическую систему: микрофлора служит своеобразным «экстракорпоральным органом», играющим важную роль в жизнедеятельности животного. Будучи биологическим фактором защиты, нормальная микрофлора является тем барьером, после прорыва которого индуцируется включение неспецифических механизмов защиты.
Микрофлора кожи
Кожный покров тела имеет свои области, свой рельеф, свою «географию». Клетки эпидермиса кожи постоянно отмирают и пластинки рогового слоя слущиваются. Поверхность кожи постоянно «удобряется» продуктами выделения сальных и потовых желез. Потовые железы обеспечивают микроорганизмов солями и органическими соединениями, в том числе азотсодержащими. Выделения сальных желез богаты жирами.
|
Микроорганизмы заселяют главным образом участки кожи, покрытые волосами и увлажненные потом. На участках кожи, покрытых волосами, находится около 1,5*106 клеток/см2. Некоторые виды локализуются в строго определенных участках.
Обычно на коже преобладают грамположительные бактерии. Типичными обитателями кожи являются различные виды Staphylococcus,Micrococcus,Propionibacterium,Corynebacierium,Brevibacicrium,Acinetobacter. Для нормальной микрофлоры кожи характерны такие видыStaphylococcus, какSt.epidermidis, нoне упомянутыйSt.aureus, развитие которого здесь свидетельствует о неблагоприятных изменениях микрофлоры организма. Представители родаCorynebacteriumиногда составляют до 70% всей кожной микрофлоры. Некоторые виды являются липофильными, т. е. образуют липазы, разрушающие выделения жировых желез.
Большинство микроорганизмов, населяющих кожу, не представляют какой-либо опасности для хозяина, но некоторые, и, прежде всего St.aureusусловно патогенны.
Нарушение нормального сообщества бактерий кожи может иметь неблагоприятные последствия для макроорганизма.
На кожных покровах микроорганизмы подвержены действию бактерицидных факторов сального секрета, повышающих кислотность (соответственно значение рН снижается). В подобных условиях живут преимущественно Staphylococcusepidermidis, микрококки, сарцины, аэробные и анаэробные дифтероиды. Другие виды (Staphylococcusaureus, бета-гемолитические и негемолитические стрептококки) правильнее рассматривать как временные. Основные зоны колонизации – эпидермис (особенно роговой слой), кожные железы (сальные и потовые) и верхние отделы волосяных фолликулов. Микрофлора волосяного покрова идентична микрофлоре кожи.
|
Микрофлора желудочно-кишечного тракта.
Наиболее активно микроорганизмы заселяют желудочно-кишечный тракт ввиду обилия и разнообразия в нем питательных веществ.
Кишечный тракт животных — обычное место обитания разнообразных микроорганизмов, преимущественно анаэробных. Характер взаимоотношений этих микроорганизмов с хозяином может быть различным и в первую очередь зависит от особенностей его рациона.
В кишечном тракте хищных или насекомоядных животных находится корм, по своему биохимическому составу близкий к составу их тела. Он является также прекрасным субстратом для развития микроорганизмов. Поэтому здесь складываются конкурентные взаимоотношения микроорганизмов с хозяином. Последний не может полностью исключить возможность их развития, но ограничивает его благодаря секреции кислоты и быстрому пищеварению, в результате чего почти все продукты деятельности пищеварительных ферментов потребляются животным. Более медленное прохождение корма через толстый кишечник способствует бурному развитию микроорганизмов, и в прямой кишке уже содержится огромное их количество.
В кишечник травоядных попадает большое количество клетчатки. Известно, что только некоторые беспозвоночные могут переваривать клетчатку самостоятельно. В большинстве случаев переваривание целлюлозы происходит за счет разрушения ее бактериями, а животное потребляет в качестве пищи продукты ее деградации и сами клетки микроорганизмов. Таким образом, здесь наблюдается кооперация, или симбиоз. Наибольшего совершенства этот тип взаимодействий достиг у жвачных животных. В их рубце корм задерживается достаточно долго, чтобы могли быть разрушены доступные микроорганизмам компоненты растительных волокон. В этом случае, однако, бактерии используют значительную часть растительного белка, который в принципе мог бы быть разрушен и использован самим животным. Однако у многих животных взаимодействие с кишечной микрофлорой носит промежуточный характер. Например, у лошадей, кроликов, мышей в кишечнике корм в значительной степени используется до того, как начнется бурное развитие бактерий. Однако в отличие от хищников, у таких животных корм дольше задерживается в кишечнике, что способствует ее сбраживанию бактериями.
|
Наиболее активная жизнедеятельность микроорганизмов всегда происходит в толстом кишечнике. Анаэробы здесь развиваются, осуществляя брожения, при которых образуются органические кислоты—преимущественно уксусная, пропионовая и масляная. При ограниченном поступлении углеводов образование этих кислот энергетически выгоднее, чем образование этанола и молочной кислоты. Происходящее здесь же разрушение белков приводит к снижению кислотности среды. Накапливающиеся кислоты могут быть использованы животным.
Содержимое кишечника — благоприятная среда обитания микроорганизмов. Однако здесь действует и ряд неблагоприятных факторов, способствующих адаптации и специализации кишечных микроорганизмов. Так, в толстом кишечнике накапливаются желчные кислоты до концентрации, уже угнетающих рост некоторых бактерий. Масляная и уксусная кислоты также обладают бактерицидными свойствами.
В состав кишечной микрофлоры различных животных входит ряд видов бактерий, способных разрушать целлюлозу, гемицеллюлозы, пектины. У многих млекопитающих в кишечнике обитают представители родов BacteroidesиRuminococcus.B.succinogenesбыл обнаружен в кишечнике лошадей, коров, баранов, антилоп, крыс, обезьян.R.albusиR.flavefaciens, активно разрушающие клетчатку, обитают в кишечнике лошадей, коров, кроликов. К сбраживающим клетчатку кишечным бактериям относятся такжеButyrivibriofibrisolvensиEubacteriumcellulosolvens. РодыBacteroidesиEubacteriumпредставлены в кишечнике млекопитающих рядом видов, некоторые из которых разрушают также белковые субстраты.
В составе кишечной микрофлоры разных животных обнаруживаются характерные различия. Так, у собак относительно много стрептококков и клостридий.
В кишечнике, рубце жвачных животных и других органах представители нормальной микрофлоры распределены определенным образом. Часть форм приурочена к поверхности клеток, другие находятся на некотором удалении от ткани. Состав прикрепленных форм может изменяться при ослаблении или заболевании хозяина, и даже при стрессе. При нервных стрессах, например, за счет активизации протеаз происходит разрушение белка на поверхности глоточного эпителия, что позволяет прикрепляться клеткам условно патогенной бактерии Pseudomonasaeruginosa, которые начинают здесь активно размножаться вместо безвредных представителей нормальной микрофлоры. Образовавшаяся популяцияPs.aeruginosaв дальнейшем может вызвать поражение легких.
Рубец жвачных обильно заселен большим числом видов бактерий и простейших. Анатомическое строение и условия в рубце почти идеально отвечают требованиям для жизнедеятельности микроорганизмов. В среднем, по данным различных авторов, количество бактерий составляет 109*1010 клеток в 1 г рубцового содержимого.
Помимо бактерий, в рубце осуществляют расщепление кормов и синтез важных органических соединений для животного организма также различные виды дрожжей, актиномицетов и простейших. Инфузорий в 1 мл может быть несколько (3-4) миллионов.
Видовой состав рубцовых микроорганизмов со временем претерпевает изменения.
В молочный период в рубце у телят преобладают лактобактерии и определенные виды протеолитических бактерий. Полное становление рубцовой микрофлоры завершается при переходе животных на кормление грубыми кормами. У взрослых жвачных видовой состав рубцовых бактерий, по мнению некоторых авторов, постоянен, существенным образом не изменяется в зависимости от кормления, времени года и ряда других факторов. Представляют наиболее важное в функциональном отношении значение следующие виды бактерий: Bacteroidessuccinogenes,Butyrivibriofibrisolvens,Ruminococcusflavefaciens,R.aibus,Cillobacteriumcellulosolvens,Clostridiumcellobioparus,Clostridiumlocheadiи др.
Утилизация в рубце жвачных моносахаридов (глюкоза, фруктоза, ксилоза и др.), поступающих с кормом, а главным образом образующихся при гидролизе полисахаридов, осуществляется в основном рубцовыми микроорганизмами. Из-за наличия в рубце анаэробных условий углеводы в клетках рубцовых микроорганизмов окисляются не полностью, конечными продуктами брожения являются органические кислоты, углекислота, этанол, водород, метан. Часть продуктов гликолиза (молочная, янтарная, валериановая кислоты и некоторые другие вещества) используется самими бактериями в качестве источника энергии и для синтеза клеточных соединений. Конечные продукты углеводного обмена в рубце жвачных – летучие жирные кислоты – используются в обмене веществ животного-хозяина.
Ацетат, один из основных продуктов рубцового метаболизма, является предшевственником жира молока, источником энергии для животных. Пропионат и бутират используются животными для синтеза углеводов.
В настоящее время известно, что белок в рубце расщепляется под действием протеолитических ферментов микроорганизмов с образованием пептидов и аминокислот, которые в свою очередь, подвергаются воздействию дезаминаз с образованием аммиака. Дезаминирующими свойствами обладают культуры, относящиеся к видам: Selenomonasruminantium,Megasphaeraeisdenii,Bacteroidesruminicolaи др. Большая часть потребляемого с кормом растительного белка превращается в рубце в белок микробиальный. Как правило, процессы расщепления и синтеза белка идут одновременно. Значительная часть рубцовых бактерий, являясь гетеротрофами, для синтеза белка использует неорганические соединения азота. Наиболее важные в функциональном отношении рубцовые микроорганизмы (Bacteroidesruminicola,Bacteroidessuccinogenes,Bacteroidesamylophilusи др.) для синтеза азотистых веществ своих клеток используют аммиак.
Тонкий отдел кишечника содержит сравнительно не большое количество микроорганизмов. В этом отделе кишечника чаще всего находятся устойчивые к действию желчи энтерококки, кишечная палочка, ацидофильные и споровые бактерии, актиномицеты, дрожжи и др.
Толстый отдел кишечника наиболее богат микроорганизмами. Основные обитатели его – энтеробактерии, энтерококки, споровые бактерии, актиномицеты, дрожжи, плесени, большое количество гнилостных и некоторых патогенных анаэробов (Cl.sporogenes,Cl.putrificus,Cl.perfringens,Cl.tetani,F.necrophorum). В 1 г экскрементов травоядных может содержаться до 3,5 млрд. различных микроорганизмов. Микробная масса составляет около 40% сухого вещества испражнений.
В толстом отделе кишечника протекают сложные микробиологические процессы, связанные с расщеплением клетчатки, пектиновых веществ, крахмала. Микрофлору желудочно-кишечного тракта принято делить на облигатную (молочнокислые бактерии, E.coli, энтерококки,Cl.perfringens,Cl.sporogenesи др.), которая адаптировалась к условиям этой среды и стала постоянным ее обитателем, и факультативную, изменяющуюся в зависимости от вида корма и воды.
Микрофлора органов дыхания.
Верхние отделы дыхательных путей несут высокую микробную нагрузку – они анатомически приспособлены для осаждения бактерий из вдыхаемого воздуха. Помимо обычных негемолитических и зеленящих стрептококков, непатогенных нейссерий, стафилококков и энтеробактерий, в носоглотке можно обнаружить менингококки, пиогенные стрептококки и пневмококки. Верхние отделы дыхательных путей у новорожденных обычно стерильны и колонизируются в течение 2-3 суток.
Исследования последних лет показали, что наиболее часто из дыхательных путей клинически здоровых животных выделяется сапрофитная микрофлора: S.saprophiticus, бактерии родовMicrococcus,Bacillus, коринеформные бактерии, негемолитические стрептококки.
Кроме того, выделены патогенные и условно-патогенные микроорганизмы: альфа- и бета – гемолитические стрептококки, стафилококки (S.aureus), энтеробактерии (эшерихии, сальмонеллы, протей и др.), пастереллы, псевдомонады, и в единичных случаях, грибы родаCandida.
В носовой полости обнаруживается наибольшее число сапрофитов и условно-патогенных микроорганизмов. Они представлены стрептококками, стафилококками, сарцинами, пастереллами, энтеробактериями, коринеформеными бактериями, грибами рода Candida,Ps.aeruginosaи бацилами. Трахея и бронхи заселены аналогичными группами микроорганизмов. В легких обнаружены отдельные группы кокков (бета- гамолитическими,S.aureus), микрококки, пастереллы,E.coli.
При снижении иммунитета у животных (особенно молодняка) микрофлора органов дыхания проявляет болезнетворные свойства.
Микрофлора мочеполовой системы.
Микробный биоценоз органов мочеполовой системы более скудный. Верхние отделы мочевыводящих путей обычно стерильны; в нижних отделах доминируют Staphylococcusepidermidis, негемолитические стрептококки, дифтероиды; часто выделяют грибы родовCandida,ToluropsisиGeotrichum. В наружных отделах доминируетMycobacteriumsmegmatis.
Основной обитатель влагалища – B.vaginalevulgare, обладающая выраженным антогонизмом к другим микробам. При физиологическом состоянии мочеполовых путей микрофлора обнаруживается только в их наружных отделах (стрептококки, молочнокислые бактерии).
Матка, яичники, семенники, мочевой пузырь в норме стерильны. У здоровой самки плод в матке стерилен до момента начавшихся родов. При гинекологических заболеваниях видовой состав микрофлоры изменяется.
Роль нормальной микрофлоры.
Нормальная микрофлора играет важную роль в защите организма от патогенных микробов, например, стимулируя иммунную систему, принимая участие в реакциях метаболизма.
Нормальная микрофлора составляет конкуренцию для патогенной; механизмы подавления роста последней достаточно разнообразны. Основной механизм – избирательное связывание нормальной микрофлорой поверхностных рецепторов клеток, особенно эпителиальных. Большинство представителей резидентной микрофлоры проявляет выраженный антагонизм в отношении патогенных видов. Эти свойства особенно ярко выражены у бифидобактерий и лактобактерий.
Нормальная микрофлора – неспецифический стимулятор («раздражитель») иммунной системы; отсутствие нормального микробного биоценоза вызывает многочисленные нарушения в иммунной системе. Другая роль микрофлоры была установлена после того, как были получены безмикробные животные. Антиген представителей нормальной микрофлоры вызывают образование антител в низких титрах. Они преимущественно представлены IgA, выделяющимися на поверхность слизистых оболочек.IgAсоставляют основу местной невосприимчивости к проникающим возбудителям и не дают возможности комменсалам проникать в глубокие ткани. Нормальная кишечная микрофлора играет огромную роль в метаболических процессах организма и поддержании их баланса.
Общепринятый факт – ведущая роль нормальной микрофлоры в обеспечении организма ионами Fe2+,Ca2+, витаминами К,D, группы В (особенно В1, рибофлавин), никотиновой, фолиевой и пантотеновой кислотами. Кишечные бактерии принимают участие в инактивации токсичных продуктов эндо- и экзогенного происхождения. Кислоты и газы, выделяющиеся в ходе жизнедеятельности кишечных микробов, оказывают благоприятное действие на перистальтику кишечника и своевременное его опорожнение.
Таким образом, действие микрофлоры тела на организм складывается из следующих факторов:
· Нормальной микрофлоре принадлежит важнейшая роль в формировании иммунологической реактивности организма.
· Представители нормальной микрофлоры благодаря продуцированию разнообразных антибиотических соединений и выраженной антагонистической активности предохраняют органы, сообщающиеся с внешней средой, от внедрения и безграничного размножения в них патогенных микроорганизмов.
· Микробные ассоциации являются существенным звеном в печеночно-кишечной циркуляции таких важнейших компонентов желчи, как соли желчных кислот, холестерина и желчные пигменты.
· Микрофлора в процессе жизнедеятельности синтезирует витамин К и ряд витаминов группы В, некоторые ферменты и, возможно, другие, пока неизвестные, биологически активные соединения.
· Микрофлора исполняет роль дополнительного ферментного аппарата, расщепляя клетчатку и другие трудно перевариваемые составные части корма.
Нарушение видового состава нормальной микрофлоры под влиянием инфекционных и соматических заболеваний, а также в результате длительного и нерационального использования антибиотиков приводит к состоянию дисбактериоза, который характеризуется изменением соотношения различных видов бактерий, нарушением усвояемости продуктов пищеварения, изменением ферментативных процессов, расщеплением физиологических секретов. Для коррекции дисбактериоза следует устранить факторы, вызвавшие этот процесс.
35. Патогенность и вирулентность микроорганизмов. Количественное определение вирулент
ности. Факторы патогенности микроорганизмов.
Патогенность – видовой генетический признак, потенциальная возможность вызывать при благоприятных условиях инфекционный процесс.
Вирулентность #и $– степень патогенности, единицы измерения – летальная и инфекц. дозы. В. может
Минимальная смертельная доза – минимум возбудителя, который вызывает гибель большинства.
Безусловно смертельная доза – 100% гибели.
Средняя летальная доза – мин, убивающий 50% опыт. животных.
Токсичность – сп-ность м-о обз-вать токсины, вредно дейст-е на оргм носителя, влияя на его метаболизм.
Инвазионность – сп-ность м-о преодолевать защит барьеры орг-ма, проникать в органы, ткани, размножаться там и подавлять защитные средства орг-ма.
Факторы патогенности:
1. микробные ферменты диполимеризир. структуры
2. адгезия – приспособления для адсорбции.
3. антифагоцитные поверхностные структуры.
4. токсины. Различают экзо(продукты обмена Гр+) и эндо(продукты распада Гр-) токсины.
Токсины – гемолизин(растворяет эритроциты), лейкоцидин (парализует и разрушает лейкоциты), нейротоксин (на ЦНС), энтеротоксин (расстройства ЖКТ).
Количественное определение вирулентности.
Для определения вирулентности стафилококков существуют несколько различных методов заражения белых мышей.
Наиболее простым является введение 0,1 мл суточной бульонной культуры испытуемого стафилококка в хвостовую вену. Учет гибели животных осуществляется в течение 10 суток, регистрируют наличие абсцессов в почках.
Удобно пользоваться способом Badenski и сотр. (1958), Суточная бульонная культура центрифугируется при 3000 об/мин - 30 мин. Полученный осадок ресуспендируется в половинном объеме декантата и в количестве 0,05 мл вводится 6 мышам позади глазного яблока в окологлазничную клетчатку. Культуру, вызывающую гибель половины и более зараженных мышей в течение 6 дней, считают вирулентной.
При этих методах заражения вирулентной культурой у животных развивается общин септический процесс с преимущественным поражением почек. Основная гибель мышеи происходит на 3-5-й день после заражения.
Другие способы заражения белых мышей (внутрибрюшинный и интраназальный) требуют в десятки
раз большей заражающей дозы, максимум гибели мышей приходится на 1-2-е сутки, что характеризует преимущественно токсический компонент процесса (С. А. Анатолий, И. И. Антоновская, 1967).
В то же время ряд исследователей отдают предпочтение более простому технически внутрибрюшинному способу заражения мышей, который одновременно позволяет изучать клеточные и гуморальные механизмы развития инфекции.
Сопоставление вирулентности стафилококков для белых мышей с отдельными факторами их патогенности показало, что вирулентность штаммов, по данным большого числа исследователей, коррелирует с уровнем альфа-гемотоксина. Что касается других признаков патогенности и их корреляции с вирулентностью, то получены разноречивые сведения. Так, по данным С. А. Анатолия (1969), вирулентность штаммов коррелировала с продукцией бета-гемолизина, летального фактора, лецитовителлазы, гиалуронидазы и коагулазы. А. К. Акатов (1968) не отмечает корреляции вирулентности с коагулазной, лециговител-лазной, фибринолитической активностью, не установлена корреляция с дельта-токсигенностью.
Для сравнения вирулентности стафилококковых культур можно использовать их способность вызывать дермонекротическую реакцию у кроликов.
Готовят 4-миллиардную взвесь суточной агаровой культуры стафилококка в физиологическом растворе, а из полученной густоты делают разведения, чтобы получить 2- и 1-миллиардные взвеси. Из каждого разведения в объеме 0,1 мл, что составляет 100, 200, 400 миллионов микробных тел, вводят кролику в выстриженную или депилированную накануне кожу. На одном кролике можно одновременно поставить до 8 внутрикожных проб. Ежедневно отмечают проявления дермонекротической реакции, а окончательно на 4-е сутки. За минимальную дермонекротическую дозу принимают то наименьшее количество культуры, которое дает некроз на 4-е сутки
40. Неспецифические факторы защиты организма. Фагоцитарная теория иммунитета (И.И.
Мечников).
кожа и слизистые- единственный барьер препятствующий проник-ию м-о в организм. Они выделяют бактерицидные в-ва, в результате чего число микробов на их поверхности уменьш-ся. Цидное дейст-е кожи выше тогда, когда она чистая. Слиз.глаз преграждает путь микробам благодаря лизоциму, также рот пол-ть. Если м-о проникают ч\з поврежд-ю кожу, то на их пути встрч-ся лимф узлы. Больш роль играет печень. К естеств преградам можно отнести однокамер жел-к(НС1).
Гуморал-е фак-ры (жид-ти орг-ма): в сыв-ке крови содерж-ся AT, комплемент, пропердин и др. комплемент содерж в сыв крови, термолабилен; -сис-ма белков сыв крови, участ-щих в р-циях гумор-го нммун-та и фагоцитозе. Он взаимодейс-т в комплексе АГ-АТ. Пропердин представ-т собой гамма-глобулин, предохраняет орг-зм от Г- м-о. Лизоцим -лизирует Г+ м-о. Лизины -растворяют бак и эритроциты. Лактоферрин - непегментирова-й гликопротеид, обладающийFe-связывающей акт-ю:- фактор местного иммунитета, защищ-ий от м-о. эпит покровы.
Интарферон -фаткор противовирус-й защиты. Ф-я обеспечения генетич-го гомсосгази кл:a-интерферон или лейкоцитарный, кот продуц-т лейкоциты,обработпнные вирусами или др АГ.b- интерферон (фибробластный), кот продуц-т фибробласты, обработ-ые вирусами или АГ.a- иb- отнесены к типуJ.y-интерферон, продуц-т лимфоци-ты и макрофаги, активируемые невирус индукт-ми. Интерферон усил цитотоксическос дейст-е сенснби-лизир-х лимфоцитов и К-кл, оказ-т противо-опухолевое и др дейст-я. Ингибиторы (подавляют): термолабильные и термостабильмые(до 100 °С)
Клеточные факторы естественной резистентности.
Система фагоцитов. Фагоцитоз – специальная форма эндоцитоза, при которой поглощаются крупные частицы (микробы, клетки и др.). У высших животных фагоцитоз осуществляется только специфическими клетками (нейтрофилами и макрофагами), которые происходят от одной общей клетки-предшественника и защищают животных и человека от инфекции, поглощая вторгшиеся микроорганизмы, а также утилизируют старые или поврежденные клетки или клеточные оболочки.
Среди макрофагов различают подвижные (циркулирующие) и неподвижные (оседлые) клетки. Подвижные макрофаги – это моноциты периферической крови, а неподвижные – макрофаги печени, селезенки, лимфатических узлов, выстилающие стенки мелких кровеносных сосудов и других органов и тканей.
Активность фагоцитов связана с наличием в сыворотке крови опсонинов. Опсонины – белки нормальной сыворотки крови, вступающие в соединение с микробами, благодаря чему последние становятся более доступными для фагоцитов.
Различают фагоцитоз завершенный (при котором происходит гибель фагоцитированных клеток) и незавершенный (гибель микроорганизмов внутри фагоцита не наступает).
42.
3. Структура иммуноглобулинов различных классов и их функции.
ИММУНОГЛОБУЛИНЫ(лат. immunisсвободный, избавленный от чего-либо +globulusшарик) - сывороточные и секреторные белки человека или животных, обладающие активностью антител и участвующие в механизме защиты против возбудителей инфекционных болезней.
Bммуноглобулины продуцируются В-лимфоцитами (плазматическими клетками). Мономеры иммуноглобулинов состоят из двух тяжелых (Н-цепи) и двух легких (L-цепи) полипептидных цепей, связанных дисульфидной связью. Эти цепи имеют константные (С) и вариабельные (V) участки. Папаин расщепляет молекулу иммуноглобулина на два одинаковых антигенсвязывающих фрагмента -Fab(Fragmentanligenbinding) иFc(Fragmenlcrislalhzable). По типу тяжелой цепи различают 5 классов иммуноглобулиновIgG,IgM,IgA,IgD,IgE.
В зависимости от физикохимических и биологических свойств различают иммуноглобулины классов IgM,IgG,IgA,IgE,IgD.
Иммуноглобулины – белки с четвертичной структурой, т.е. их молекулы построены из нескольких полипептидных цепей. Молекула каждого класса состоит из четырех полипептидных цепей – двух тяжелых и двух легких, связанных между собой дисульфидными мостиками. Легкие цепи – структура общая для всех классов иммуноглобулинов. Тяжелые цепи имеют характерные структурные особенности, присущие определенному классу, подклассу.
Антитела, входящие в определенные классы иммуноглобулинов, обладают различными физическими химическими, биологическими и антигенными свойствами.
Иммуноглобулины содержат три вида антигенных детерминант: изотипические (одинаковые для каждого представителя данного вида), аллотипические (детерминанты, различные у представителей данного вида) и идиотипические (детерминанты, определяющие индивидуальность данного иммуноглобулина и являющиеся различными у антител одного класса, подкласса). Все указанные антигенные различия определяются с помощью специфических сывороток.
Иммуноглобулины: сывороточные, секреторные, поверхностные.
Классы Ig:
IgG– нейтрализуют токсины, проходят сквозь плаценту, вторичная или хронич. инфекция.
IgM– первый иммунный ответ, не проходят сквозь плаценту, способны агглютинировать бакт, нейт-вать вирусы, связывать комплемент, ат-ать фагоцитоз.
IgA– секреторные и сывороточные, местный иммунитет.
IgE– АГ аллергии и гиперчувствительности.
IgD– на поверхности В-л, играют роль аутоиммунных ипр.
4. Антитела, природа и функция антител. Антителообразование: первичный и вторичный от
веты.
В организме у-
Вырабатываются плазмоцитами.
Антитела - иммуноглобулины, продуцируемые В-лимфоцитами (плазматическими клетками). Мономеры иммуноглобулинов состоят из двух тяжелых (Н-цепи) и двух легких (L-цепи) полипептидных цепей, связанных дисульфидной связью. Эти цепи имеют константные (С) и вариабельные (V) участки. Папаин расщепляет молекулу иммуноглобулина на два одинаковых антигенсвязывающих фрагмента - Fab (Fragment anligen binding) и Fc (Fragmenl crislalhzable). По типу тяжелой цепи различают 5 классов иммуноглобулинов IgG, IgM, IgA, IgD, IgE.
Активный центр антител - антигенсвязывающий участок Fab-фрагмента иммуноглобулина, образованный гипервариабельными участками Н- и L-цепей, связывает эпитопы антигена. В активном центре имеются специфичные комплементарные участки к определенным антигенным эпитопам Fc-фрагмент может связывать комплемент, взаимодействует с мембранами клеток и участвует в переносе IgG через плаценту.
Домены антител - компактные структуры, скрепленные дисульфидной связью. Так, в IgG различают: V-домены легких (VL) и тяжелых (VH) цепей антитела, расположенные в N-концевои части Fab-фрагмента; С-домены константных участков легких цепей (СL); С-домены константных участков тяжелых цепей (СH1, СH2, СH3). Комплементсвязывающий участок находится в СH2-домене.
Изотип антител (класс, подкласс иммуноглобулинов - IgM, IgGl, IgG2, IgG3, IgG4, IgA1, IgA2, IgD, IgE) определяется С-доменам тяжелых цепей; выявляется с помощью антисыворотки против Fc-фрагментов тяжелых цепей в реакции радиальной иммунодиффузии и др.
Идиотип антител определяется антигенсвязывающими центрами Fab-фрагментов антител, т.е. антигенными свойствами вариабельных участков (V-областей). Идиотип состоит из набора идиотопов - антигенных детерминант V-области антитела.
Некоторые функциональные особенности антител
Антитела, например IgG, вместе с другими onсонинами усиливают фагоцитоз.
Аффинность (аффинитет) антител - сродство антител к антигенам.
Авидность антител - прочность связи антитела с антигеном и количество связанного антигена антителами.
Антитела – белки, относящиеся к иммуноглобулинам, которые синтезируются лимфоидными и плазматическими клетками в ответ на попадание в организм антигена, обладающими способностью специфически связываться с ним. Антитела составляют более 30% белков сыворотки крови, обеспечивают специфичность гуморального иммунитета благодаря способности связываться только с тем антигеном, который стимулировал их синтез.
Первоначально антитела условно классифицировали по их функциональным свойствам на нейтрализующие, лизирующие и коагулирующие. К нейтрализующим были отнесены антитоксины, антиферменты и вируснейтрализующие лизины. К коагулирующим – агглютинины и преципитины; к лизирующим – гемолитические и комплементсвязывающие антитела. С учетом функциональной способности антител были даны названия серологическим реакциям: агглютинация, гемолиз, лизис, преципитация и др.
В соответствии с Международной классификацией сывороточные белки, несущие функцию антител, получили название иммуноглобулинов (Ig). В зависимости от физикохимических и биологических свойств различают иммуноглобулины классов IgM, IgG, IgA, IgE, IgD.
Синтез и динамика образования антител
Антитела вырабатывают плазматические клетки селезенки, лимфатических узлов, костного мозга, пейеровых бляшек. Плазматические клетки (антителопродуценты) происходят из предшественников В-клеток после их контакта с антигеном. Механизм синтеза антител аналогичен синтезу любых белков и происходит на рибосомах. Легкие и тяжелые цепи синтезируются отдельно, затем соединяются на полирибосомах, а окончательная их сборка происходит в пластинчатом комплексе.
Динамика образования антител.
При первичном иммунном ответе в антителообразовании различают две фазы: индуктивную (латентную) и продуктивную. Индуктивная фаза – это период от момента парентерального введения антигена до появления антигенреактивных клеток (продолжительность не более суток). В эту фазу происходит пролиферация и дифференцировка лимфоидных клеток в направлении синтеза IgM. Вслед за индуктивной фазой наступает продуктивная фаза антителообразования. В этот период, примерно до 10…15 суток уровень антител резко возрастает, при этом уменьшается число клеток, синтезирующих IgM, и нарастает продукция IgA.
Механизм образ-я антител
АТ выраб-ся плазматич-ми кл, нах-ся в селезенке, л/у, костном мозге, пейероаых бляшках. Плазматич-е кл (АТ-продуценты) происходят из предшественников В-кл, подвергшихся контакту с АГ. В-кл и их потомки функционир-т по клональному принципу: по мере развития иммунного ответа они дифферннцир-сяи созревают. Механизм; синтез AT происходит на рибосомах. Легкие и тяжелые цепи, из кот состоит мол AT, синтезир-ся отдельно, затем соединяются на полирибосомах, и окончат-я сборка происходит в пластинчатом комплексе. Одна плазмати-я кл может переключаться с синтеза IgM на синтез IgG.
В первичном иммунном ответе в АТобр-ии различают 2 фазы:1)индуктивную (латентную) - от момента введения АГ до появления лимфойдных АГ реактивных кл (не более суток), происходит дифференцировка лимфойдных кл в направлении синтеза IgMи 2)продуктивную(10-1 5 дней) - кол-воATрезко увелич-ся и нарастает продукцияIgG. Вторичный иммунный ответ базир-ся на иммунологич-й памяти (Т- и В-лнмфоцитов) при повторном введении АГ - усиленный ответ.
Первичный и вторичный иммунный ответ.
Первичный наблюдается при первичном введении АГ. Для начала процесса синтеза антител (АТ) достаточно кратковременного (5-15мин) контакта АГ с иммунокомпетентными клетками. В первые 6-12 ч (не более 20) после первичного введения антигена (АГ) протекает индуктивная фаза АТ-образования. Происходит распознавание обработка АГ МФ, передача АГ-ой информации Лимф, образование плазмоцитов. 2-я фаза – продуктивная. Кол-во АТ в теч.4-15 дней растет экспоненциально. С начала продуктивной фазы преобладают синтез IgM, затем сменяется на синтез IgG.
Затем фаза врем. рефрактерности – это срок, необхдимая для восстановления полной чувствительности иммунокомпетентных органов и он определяет интервалы м/у введением иммуногенов. После первичного ИО образуется определенное количесвтво долгоживущих клеток памяти, которые сохраняют информацию об АГ и при повторном попадании в организм обуславливают. вторичный ИО. Он характеризуется признаками:
- стимулируется меньшей дозой АГ
- продукция АТ начинается быстрее (индуктивная фаза 5-6 ч)
- характеризуется выработкой большего кол-ва АТ (не менее чем в 3 раза чем при первичном ИО)
- пик синтеза Ig раньше (3-5 день)
- аффинитет АТ выше
- вырабатываются АТ большей авидности
- IgG сразу характеризуются высокой аффинностью (при первичном ИО аффинность их вначале невысокая)
- синтезированные АТ дольше сохраняются в организме
44.
7. Реакции агглютинации.
Реакция агглютинации бактерий протекает в две фазы. Первая, специфическая, невидимая фаза реакции агглютинации состоит во взаимодействии антител с антигенными детерминантами, расположенными на поверхности бактерий и других корпускулярных частиц. Вторая, видимая, фаза реакции, протекающая лишь в присутствии электролита в среде, заключается в склеивании и оседании на дно пробирки иммунных комплексов в виде хлопьев или зерен, видимых невооруженным глазом.
Кроме специфической агглютинации бактерий, вызванной антителами, возможна спонтанная агглютинация (в отсутствие иммунной сыворотки). Спонтанную агглютинацию дают R-фор-мы бактерий, не образующие гомогенной взвеси в изотоническом растворе хлорида натрия и осаждающиеся в виде клеточных агрегатов. При кислой реакции среды в результате снятия одноименного заряда с поверхности бактериальных клеток в изоэлектрической зоне происходит склеивание — наступает «кислотная» агглютинация.
В лабораторной диагностике инфекционных заболеваний реакцию агглютинации очень часто применяют как для идентификации видов и сероваров бактерий с помощью диагностических агглютинирующих сывороток, так и для определения присутствия антител в сыворотке больного по известным антигенам (диагностикумам), т. е. для серодиагностики.
Реакция агглютинации.