При изображении плоских фигур в параллельной проекции применяются следующие теоремы.
Теорема 1.
Изображением является любой треугольник АВС.
Теорема 2.
Если дано изображение на плоскости П, то можно построить изображение любой точки
.
Исходя из теорем 1 и 2, легко построить изображения любых плоских фигур; в частности, изображением параллелограмма (квадрата, ромба, прямоугольника) является любой параллелограмм. Изображением трапеции является трапеция с тем же отношением длин оснований. Изображением окружности является эллипс, изображением перпендикулярных диаметров окружности являются сопряженные диаметры эллипса.
Ввиду того, что при изображении сферы, цилиндра, конуса необходимо уметь строить изображение окружности, я остановлюсь немного подробнее на способах построения эллипса.
Способ I. Построение эллипса по двум главным диаметрам АВ и CД (рис. 8).
1. АВ ∩ СД = О, О- середина отрезка АВ
2. W1 (0, ОС),. W2 (0, ОА) - окружности
3.
4. М1? l,М2 ? l ∩ W2.
5. l 1 || 0В, М1? l 1 , l 2 || ОС, М2? l 2
6. М? l 1∩ l 2 , М - искомая точка эллипса.
Доказательство правильности построения легко провести, введя систему координат O (0;0), В(а; 0), С(0; b) и рассматривая параметр t - угол между осью Ох и прямой l.
Способ П. Построение эллипса по двум сопряженным диаметрам, используя перспективно аффинные преобразования плоскости (рис. 9).
Пусть АВ и CD - два сопряженных диаметра эллипса. Я построю на диаметре АВ окружность и проведу диаметр С1D1 ей перпендикулярный. Применяю перспективно аффинное преобразование, заданное осью АВ и парой соответствующих точек С1 → С (или D1→ D). Тогда образом окружности будет эллипс.
Собственно построение.
1. АВ, CD, О - середина отрезков АВ и СD.
2. W (O, ОА) - окружность.
3. OD1 ┴ AB, C1 ? W, D1 ? W
4.
5. С1 М1 ∩ АВ=Мо
6. СМо.
7. l || С1С, М1 ? l
8. СМо ∩ l = М - искомая точка эллипса.
Можно значительно упростить построение образа точки М1, используя подобие треугольников ОСС1 и ОММ1 (ОМ1 || ОС1, ММ1 || СС1 и ОМ || ОС). Существует много других способов построения эллипса.
Изображение пространственных фигур в параллельной проекции
При изображении пространственных фигур в параллельной проекции применяют теорему Польке-Шварца. Всякий полный невыраженный четырехугольник АВСD вместе с его диагоналями можно рассматривать как изображение тетраэдра любой наперед заданной формы
Используя теорему Польке-Шварца и свойство параллельного проецирования, я показываю, что изображением призмы и, цилиндра и конуса являются фигуры.
Методы построения сечений
Метод следов
Суть метода заключается в построении вспомогательной прямой, являющейся изображением линии пересечения секущей плоскости с плоскостью какой-либо грани фигуры F. Удобнее всего строить изображение линии пересечения секущей плоскости с плоскостью нижнего основания. Эту линию называют следом секущей плоскости. Используя след, легко построить изображения точек секущей плоскости, находящихся на боковых ребрах или гранях фигуры F. Для тех, кто знаком с гомологией, удобно ее применять при нахождении образов точек нижнего основания фигуры F - изображения фигуры F. Последовательно соединяя образы этих точек, получим изображение искомого сечения. В дальнейшем будем допускать вольность речи, и говорить «строим сечение» вместо «строим изображение сечения».
Пусть М, N, К - точки секущей плоскости, М1, N1, К1 - их проекции на плоскость основания. При этом для призм и цилиндров ММ1 || NN1, NN1 || КК1, для конусов и
пирамид ММ1∩ NN1∩ КК1 = S (S- вершина). Удобнее обозначать вершины нижнего основания через А1, В1, С1,... верхнего основания - А, В, С,.... Кратко суть метода следов можно записать следующим образом.
1. МN∩ М1N1=X
2. МК∩ М1К1=У
3. ХУ= S - след секущей плоскости
4. A1M1 ∩ S = A0 возможно
5. АоМ ∩ А1А == А
6. Пункты 4-5 повторить для вершин В1, С1,... нижнего основания фигуры F;
7. - искомое сечение.
Фактически где f гомология, заданная осью s и парой точек М1 → М или N1 → N, или К1 → К.
Строить сечение фигуры F секущей плоскостью α методом следов удобно в тех случаях, когда секущая плоскость задана тремя точками, ей принадлежащими, или прямой и не принадлежащей ей точкой, или двумя пересекающимися прямыми, или двумя параллельными прямыми. Во всех случаях легко взять три точки М, N, К, принадлежащие плоскости α, и решение проводить по указанной схеме.
Пример 1. Построим сечение призмы А1B1C1D1ABCD плоскостью, проходящей через три точки М, N, К. Я рассматриваю все случаи расположения точек М, N, К на поверхности призмы.
Рассмотрим случай: М? ВВ1, N? СС1D1D, K? АА1E1. В данном случае, очевидно, что
М1=В1.
Построение.
1.МN ∩ М1К1 = Х
1. МК ∩ М1К1 = У
2. ХУ= S - след секущей плоскости
3. А1К1 ∩ S =Ао
4. АоК ∩ А1А= A, АоК ∩ ЕЕ1= Е.
5. D1N1 ∩ S= Dо
6. DоN ∩ DD1 = D, DоN∩ CC1= C
7. - искомое сечение.
Пример 2.
Построим сечение пирамиды SABCDE плоскостью, проходящей через точку М? SBC и прямую l лежащую в грани SED.
Построение.
1. SМ ∩ ВС=М1
2. М Е ∩МЕ = X, l ∩ЕО = У, ХУ = S - след секущей плоскости
3. S ∩АВ=К, S ∩АЕ = N.
4. ВС ∩ S = Во, ВоМ ∩S B = B, ВоМ ∩ SC = С.
5. - искомое сечение.
При объяснении шагов построения можно использовать понятие гомологии или факты стереометрии, опираясь на наглядное представление о данных в условии задачи фигурах. Например, в последнем примере комментарии могут быть следующими.
1. То, что дано, считается построенным.
2. Так как точка М лежит в грани SВС, то прямые SМ и ВС пересекаются, следовательно, легко построить их точку пересечения М1.
3. Прямая l лежит в грани SЕD, значит, она пересекает ребра SD и SE в точках и D и Е.
4. Находим прямую s пересечения плоскости основания и секущей плоскости, используя известные точки М, D, Е в секущей плоскости.
5. Очевиден шаг построения.
6. Прямые ВС и s лежат в одной плоскости, Во - их точка пересечения лежит в секущей плоскости, в плоскости основания и в плоскости SВС. Точка М лежит в секущей плоскости и в плоскости SВС. Следовательно, прямая ВоМ является прямой пересечения секущей плоскости с плоскостью грани SВС. Таким образом, легко построить точки и В и С.