Метод корреляции и регрессии. Значение и основные расчеты зависимостей в линейных управлениях связи





Для количественного описания взаимосвязей между экономическими переменными в статистике используют методы регрессии и корреляции.

Регрессия - величина, выражающая зависимость среднего значения случайной величины уот значений случайной величины х.

Уравнение регрессии выражает среднюю величину одного признака как функцию другого.

Функция регрессии - это модель вида у = л», где у - зависимая переменная (результативный признак); х - независимая, или объясняющая, переменная (признак-фактор).

Линия регрессии - график функции у = f (x).

2 типа взаимосвязей между х и у:

1) может быть неизвестно, какая из двух переменных является независимой, а какая - зависимой, переменные равноправны, это взаимосвязь корреляционного типа;

2) если х и у неравноправны и одна из них рассматривается как объясняющая (независимая) переменная, а другая - как зависимая, то это взаимосвязь регрессионного типа.

Виды регрессий:

1) гиперболическая - регрессия равносторонней гиперболы: у = а + b / х + Е;

2) линейная - регрессия, применяемая в статистике в виде четкой экономической интерпретации ее параметров: у = а+b*х+Е;

3) логарифмически линейная - регрессия вида: In у = In а + b * In x + In E

4) множественная - регрессия между переменными у и х1 , х2 ...xm, т. е. модель вида: у = f(х1 , х2 ...xm)+E, где у - зависимая переменная (результативный признак), х1 , х2 ...xm - независимые, объясняющие переменные (признаки-факторы), Е- возмущение или стохастическая переменная, включающая влияние неучтенных факторов в модели;

5) нелинейная - регрессия, нелинейная относительно включенных в анализ объясняющих переменных, но линейная по оцениваемым параметрам; или регрессия, нелинейная по оцениваемым параметрам.

6) обратная - регрессия, приводимая к линейному виду, реализованная в стандартных пакетах прикладных программ вида: у = 1/a + b*х+Е;

7) парная - регрессия между двумя переменными у и x, т. е, модель вида: у = f (x) + Е, где у -зависимая переменная (результативный признак), x – независимая, объясняющая переменная (признак - фактор), Е - возмущение, или стохастическая переменная, включающая влияние неучтенных факторов в модели.

Корреляция - величина, отражающая наличие связи между явлениями, процессами и характеризующими их показателями.

Корреляционная зависимость - определение зависимости средней величины одного признака от изменения значения другого признака.

Коэффициент корреляции величин х и у (rxy) свидетельствует о наличии или отсутствии линейной связи между переменными:

где (-1; 1). Если: = -1, то наблюдается строгая отрицательная связь; = 1, то наблюдается строгая положительная связь; = 0, то линейная связь отсутствует.

- ковариация, т. е. среднее произведение отклонений признаков от их средних квадратических отклонений.

Коэффициент корреляции может служить мерой зависимости случайных величин.Корреляция для нелинейной регрессии:

при R[0;1].

Чем ближе R к 1, тем теснее связь рассматриваемых признаков.

Основные задачи и предпосылки применения корреляционно-регрессионного анализа:

Формы проявления корреляционной связи между признаками:

1) причинная зависимость результативного признака от вариации факторного признака;

2) корреляционная связь между двумя следствиями общей причины. Здесь корреляцию нельзя интерпретировать как связь причины и следствия. Оба признака - следствие одной общей причины;

3) взаимосвязь признаков, каждый из которых и причина, и следствие. Каждый признак может выступать как в роли независимой переменной, так и в качестве зависимой переменной.

Задачи корреляционно-регрессионного анализа:

1) выбор спецификации модели, т. е. формулировки вида модели, исходя из соответствующей теории связи между переменными;

2) из всех факторов, влияющих на результативный признак, необходимо выделить наиболее существенно влияющие факторы;

3) парная регрессия достаточна, если имеется доминирующий фактор, который и используется в качестве объясняющей переменной. Поэтому необходимо знать, какие остальные факторы предполагаются неизменными, так как в дальнейшем анализе их придется учесть в модели и от простой регрессии перейти к множественной;

4) исследовать, как изменение одного признака меняет вариацию другого.

Предпосылки корреляционно-регрессионного анализа:

1) уравнение парной регрессии характеризует связь между двумя переменными, которая проявляется как некоторая закономерность лишь в среднем в целом по совокупности наблюдений;

2) в уравнении регрессии корреляционная связь признаков представляется в виде функциональной связи, выраженной соответствующей математической функцией;

3) случайная величина Е включает влияние неучтенных в модели факторов, случайных ошибок и особенностей измерения;

4) определенному значению признака-аргумента отвечает некоторое распределение признака функции.

Недостатки анализа:

1) не включение ряда объясняющих переменных:

a. целенаправленный отказ от других факторов;

b. невозможность определения, измерения определенных величин (психологические факторы);

c. недостаточный профессионализм исследователя моделируемого;

2) агрегирование переменных (в результате агреги­рования теряется часть информации);

3) неправильное определение структуры модели;

4) использование временной информации (изменив временной интервал, можно получить другие результаты регрессии);

5) ошибки спецификации:

a. неправильный выбор той или иной математической функции;

b. недоучет в уравнении регрессии какого-либо существенного фактора, т. е. использование парной регрессии, вместо множественной);

6) ошибки выборки, так как исследователь чаще имеет дело с выборочными данными при установлении закономерной связи между признаками.

7) ошибки измерения представляют наибольшую опасность. Если ошибки спецификации можно уменьшить, изменяя форму модели (вид математической формулы), а ошибки выборки - увеличивая объем исходных данных, то ошибки изме­рения сводят на нет все усилия по количественной оценке связи между признаками.

Корреляционные параметрические методы - методы оценки тесноты связи, основанные на использовании, как правило, оценок нормального распределения, применяются в тех случаях, когда изучаемая совокупность состоит из величин, которые подчиняются закону нормального распределения.

Расчет показателей силы и тесноты связей Линейный коэффициент корреляции - количественная оценка и мера тесноты связи двух переменных. Коэффициент корреляции принимает значения в интервале от -1 до +1. Считают, что если этот коэффициент не больше 0,30, то связь слабая: от 0,3 до 0,7 - средняя; больше 0,7 - сильная, или тесная. Когда коэффициент равен 1, то связь функциональная, если он равен 0, то говорят об отсутствии линейной связи между признаками.

Коэффициент детерминации - квадрат линейного коэффициента корреляции, рассчитываемый для оценки качества подбора линейной функции.





Читайте также:
Тема 5. Подряд. Возмездное оказание услуг: К адвокату на консультацию явилась Минеева и пояснила, что...
Жанры народного творчества: Эпохи, люди, их культуры неповторимы. Каждая из них имеет...
Романтизм: представители, отличительные черты, литературные формы: Романтизм – направление сложившеесяв конце XVIII...
Своеобразие родной литературы: Толстой Л.Н. «Два товарища». Приёмы создания характеров и ситуаций...

Рекомендуемые страницы:


Поиск по сайту

©2015-2020 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту:

Обратная связь
0.016 с.