Дисперсия как общая мера вариации. Правило сложения дисперсий.





Дисперсия – наиболее общая мера вариации признака. На основании дисперсии можно увидеть количество, меру влияния всех причин на вариацию признака. Можно видеть те причины, которые в наибольшей мере вызывают вариацию признака.

Общая дисперсия характеризует вариацию признака во всей совокупности, сложившуюся под влиянием всех факторов и условий.

Межгрупповая дисперсия измеряет систематическую вариацию, обусловленную влиянием фактора, по которому произведена группировка:

— групповые средние,

— численность единиц i-й группы

Внутригрупповая дисперсия оценивает вариацию признака, сложившуюся по влиянием других, неучитываемых в данном исследовании факторов и независящую от фактора группировки. Она определяется как средняя из групповых дисперсий.

— дисперсия i-ой группы.

Все три дисперсии ( ) связаны между собой следующим равенством, которое известно как правило сложения дисперсий:

на этом соотношении строятся показатели, оценивающие влияние признака группировки на образование общей вариации.


29. Структурные средние: мода, медиана, квартиль, дециль, смысл и применение для анализа распределений.

Мода — это наиболее часто встречающийся вариант ряда. Мода применяется, например, при определении размера одежды, обуви, пользующейся наибольшим спросом у покупателей. Модой для дискретного ряда является варианта, обладающая наибольшей частотой. При вычислении моды для интервального вариационного ряда необходимо сначала определить модальный интервал (по максимальной частоте), а затем — значение модальной величины признака по формуле:

где:

— значение моды

— нижняя граница модального интервала

— величина интервала

— частота модального интервала

— частота интервала, предшествующего модальному

— частота интервала, следующего за модальным

Медиана —это значение признака, которое лежит в основе ранжированного ряда и делит этот ряд на две равные по численности части.

Для определения медианы в дискретном ряду при наличии частот сначала вычисляют полусумму частот , а затем определяют, какое значение варианта приходится на нее. (Если отсортированный ряд содержит нечетное число признаков, то номер медианы вычисляют по формуле:

Ме = (n(число признаков в совокупности) + 1)/2,

в случае четного числа признаков медиана будет равна средней из двух признаков находящихся в середине ряда).

При вычислении медианы для интервального вариационного ряда сначала определяют медианный интервал, в пределах которого находится медиана, а затем — значение медианы по формуле:

где:

— искомая медиана

— нижняя граница интервала, который содержит медиану

— величина интервала

— сумма частот или число членов ряда

- сумма накопленных частот интервалов, предшествующих медианному

— частота медианного интервала

 

Квартили предоставляют важную информацию о структуре вариационного ряда к-л признака. Вместе с медианой они делят вариационный ряд на 4 равные части. Квартилей две, их обозначают символами Q, верхняя и нижняя квартиль. 25% значений меньше, чем нижняя квартиль, 75% значений меньше, чем верхняя квартиль.

Квартили (четверти) отсекают от совокупности соответственно 25%, 50% и 75%.

Децили отсекают от совокупности соответственно 10%, 20%, 30% и т.д.

 





Читайте также:
Этапы развития человечества: В последние годы определенную известность приобрели попытки...
Перечень документов по охране труда. Сроки хранения: Итак, перечень документов по охране труда выглядит следующим образом...
Задачи и функции аптечной организации: Аптеки классифицируют на обслуживающие население; они могут быть...
Методы исследования в анатомии и физиологии: Гиппократ около 460- около 370гг. до н.э. ученый изучал...

Рекомендуемые страницы:


Поиск по сайту

©2015-2020 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту:

Обратная связь
0.01 с.