Описание процессов, происходящих в одном цикле ДВС
Рассмотрим действительный цикл работы четырехтактного дизельного двигателя по мере происходящих в нем процессов.
Процесс впуска
Первый такт – впуск горючей смеси.
Во время такта впуска (рис. 1, а), когда поршень 1 движется от В.М.Т. к Н.М.Т., а впускной клапан 3 открыт, в цилиндр 2 поступает атмосферный воздух, который, нагреваясь в процессе сжатия, воспламеняет топливо, впрыскиваемое в конце такта сжатия. Гидравлическое сопротивление впускного трубопровода повышает давление воздуха в конце такта впуска до 0,08 МПа. Температура воздуха в цилиндре составляет 50–80° С.
Процесс сжатия
Второй такт – сжатие смеси.
Во время такта сжатия (рисунок 1, б), когда впускной 3 и выпускной 5 клапаны закрыты, температура, и давление воздуха в цилиндре значительно возрастают. Вследствие высокой степени сжатия (е=7,8) давление и температура воздуха достигают значений 3,419МПа и 600 °С соответственно. В конце такта в цилиндр через форсунку 4 (рисунок, 1, в) впрыскивается топливо. В зависимости от формы камеры сгорания и типа форсунки давление впрыска находится в пределах 8…40 МПа.
Процесс сгорания и расширения
Третий такт – расширение, или рабочий ход.
Впрыснутое распыленное топливо, перемешиваясь со сжатым воздухом, самовоспламеняется и сгорает. При этом температура газов к концу сгорания повышается до 1600 °С, а давление до 7,864МПа. В конце такта расширения температура снижается до 700…10000С, а давление до 0,677МПа. Под давлением газов, образующихся в результате сгорания топливовоздушной смеси, поршень перемещается от В.М.Т. к Н.М.Т., совершая механическую работу (рисунок 1, в).
Процесс выпуска
|
Четвертый такт – выпуск отработавших газов.
Продукты сгорания выходят из цилиндра в атмосферу (рисунок 1, г). Температура выпуска равна 600…700 °С, а давление газов – 0,125МПа.
Расчет параметров одного цикла и построение индикаторной диаграммы ДВС
Объем камеры сгорания:
Vc = 1 (в условных единицах). (1)
Полный объем:
Va = e × Vc, (2)
где e – степень сжатия;
Va = 8×1 = 8.
Показатель политропы сжатия:
n1 =1,41 – 100/ne, (3)
где ne – номинальная частота вращения коленвала, об./мин;
n1= 1,41 – 100/4500 = 1,39
Давление в конце такта сжатия, МПа:
pc = pa × e n1, (4)
где pa – давление при впуске, МПа;
pc = 0,09×8 1,39 = 1,62 МПа
Промежуточные точки политропы сжатия (табл. 1):
px = (Va / Vx) n1 × pa, (5)
При px = (8 / 1) 1,39 × 0,09=1,62 МПа
Таблица 1. Значения политропы сжатия
Vx | |||||||
px, МПа | 0,62 | 0,35 | 0,24 | 0,17 | 0,13 | 0,11 | 0,09 |
Давление в конце такта сгорания, МПа:
pz = l × pc, (6)
где l – степень повышения давления;
pz = 3,8 × 1,62 = 6,16 МПа
Показатель политропы расширения:
n2 =1,22 – 130/ne, (7)
n2 = 1,22 – 130/4500 = 1,19
Давление в конце такта расширения:
pb = pz / e n2, (8)
pb= 6,16/81,19= 0,52 МПа
Промежуточные точки политропы расширения (табл. 2):
px = (Vb / Vx) n2 × pb. (9)
Таблица 2. Значения политропы расширения
Vx | |||||||
px, МПа | 2,71 | 1,67 | 1,19 | 0,91 | 0,73 | 0,61 | 0,52 |
Среднее теоретическое индикаторное давление, МПа:
, (10)
МПа.
Среднее давление механических потерь, МПа:
|
, (11)
где – средняя скорость поршня в цикле. Предварительно = .
МПа
Действительное индикаторное давление, МПа, с учетом коэффициента скругления диаграммы n=0,95:
, (12)
где – давление выхлопных газов, МПа.
МПа
Среднее эффективное давление цикла:
, (13)
МПа
Полученные расчетом данные используем для построения индикаторной диаграммы (рисунок 2).