В результате превращений аминокислот образуется аммиак, который обладает сильно выраженным токсическим эффектом, особенно для клеток нервной системы. В организме сформирован ряд компенсаторных процессов, обеспечивающих связывание аммиака. В печени из аммиака образуется мочевина, которая является сравнительно безвредным продуктом. В клетках аммиак связывается с глютаминовой кислотой с образованием глютамина. В почках аммиак соединяется в ионом водорода и в виде солей аммония выводится с мочой.
Конечные продукты азотистого обмена выделяются из организма различными путями: мочевина и аммиак – преимущественно с мочой; вода – с мочой, через легкие и потоотделением; СО2 – преимущественно через легкие и в виде солей с мочой и потом. Эти небелковые азотсодержащие вещества, составляют остаточный азот. В норме его содержание в крови не должно превышать 20-40 мг% (14,3-28,6 ммоль/л). Нарушения образования мочевины и выделения азотистых продуктов сопровождаются расстройствами водно-солевого баланса, нарушением функций органов и систем организма, особенно нервной системы. Возможно развитие комы.
Биосинтез белка
Белковые молекулы в виду их высочайшей видо- и индивидуальной для данной особи специфичности представляют собой чужеродные для организма вещества. Повторное внутривенное введение животным и человеку чужеродного белка приводит к его гибели вследствие сильнейшей аллергической реакции (анафилактический шок). Поэтому белок, поступающий в организм должен быть расщеплен на более простые и неспецифичные для данной особи, более универсальные вещества. Этими веществами являются его мономеры – аминокислоты. Под влиянием пищеварительных ферментов белковые молекулы, поступающие в составе пищи, фрагментируются (см. выше), благодаря чему становится возможным и происходит их усвоение, всасывание в кровь и включение в белковый обмен. Попадая в конечные пункты назначения – клетки – аминокислоты включаются в универсальный для всего живого мира процесс – биосинтез белка[x]. Вследствие этого процесса образуются специфические только для данной особи эндогенные (внутренние) белки, которые теперь могут быть использованы организмом в качестве различных биологически-активных веществ или строительного материала в процессе непрерывного обновления клеток организма. Как известно, биосинтез белка происходит под контролем со стороны дезоксирибонуклеиновой кислоты (ДНК), входящей в состав наследственного аппарата клетки. Последовательность нуклеотидов, образующих цепь ДНК согласно принципу комплементарности [xi]определяет последовательность нуклеотидов информационной рибонуклеиновой кислоты (иРНК). В свою очередь, структура иРНК определяет структуру рибосомальной РНК[xii] (рРНК), которая является конечным пунктом реализации наследственной информации на стадии биосинтеза белка. Непосредственно на матрице рРНК при участии тРНК (транспортной РНК) происходит окончательная сборка протеиновой молекулы. Аминокислоты вновь образованной белковой молекулы располагаются в строгом порядке, согласно распределению триплетов[xiii] (см. таблицу 1) в иРНК.
|
Таким образом, последовательность аминокислот в синтезированной внутри организма молекуле протеина определяется первичной структурой ДНК через посредство комплекса рибонуклеиновых кислот (иРНК, рРНК и тРНК). Весь процесс сборки белка сопровождается специализированными ферментами (ДНК- и РНК-полимеразами, транскриптазами, рестриктазами, лигазам и т. д.), которые выполняют роль «обслуживающего персонала» и осуществляют обратную связь в процессе биосинтеза белка.
|
ДНК (участок двойной спирали) | иРНК (участок цепи) | Последовательность аминокислот в молекуле белка |
… А – Т Т – А Г – Ц Г – Ц Г – Ц Ц – Г Т – А Ц – Г Ц – Г … | … А У Г Г Г Ц У Ц Ц … | … Метионин Глицин Серин … |
Таблица: Схема биосинтеза белка
В таблице буквами обозначены:
А – аденин
Г – гуанин
Ц – цитозин
Т – тимин
У – урацил
Аденин и гуанин являются пуриновыми, а цитозин, тимин и урацил – пиримидиновыми основаниями. А, Г, Ц, Т и У – нуклеотиды ДНК и РНК.
Фигурными скобками обозначены триплеты.
Говоря о ценности белков как питательных веществ необходимо учесть, что (как было сказано выше) растительные протеины не обеспечивают организм всеми необходимыми аминокислотами. Незаменимые аминокислоты поступают в организм исключительно за счет белка животного происхождения. Растительные белки содержаться почти во всех продуктах растительного происхождения. Наиболее богаты растительным белком бобовые культуры (горох, фасоль, соевые бобы и т. д.). К животным белкам относятся прежде всего белки мяса и внутренних органов млекопитающих, птиц, рыб, а так же белки молока животных и человека, белки, содержащиеся в птичьих яйцах и рыбной икре. Кроме того, в ряде стран в пищу используют некоторых насекомых и червей, ткани которых чрезвычайно богаты полноценными протеином. Ограничение или полное исключение из рациона человека белков животного происхождения и рассмотрения человека как исключительно травоядного существа лежит в основе вегетарианства (см. ниже).
|
Жиры, липидный обмен
Общие сведения
Жиры представляют собой органические соединения, в основном сложные эфиры глицерина и одноосновных жирных кислот (триглицериды); относятся к липидам. Липиды являются одними из основных компонентов клеток и тканей живых организмов, служат источником энергии в организме. Калорийность чистого жира составляет 3770 кДж/100 г. Природные жиры подразделяются на жиры животного происхождения и растительные масла.
Животные жиры получают из жировых тканей или молока некоторых животных. Говяжий, бараний, свиной и некоторые другие животные жиры являются пищевыми продуктами; жир, выделяемый из коровьего молока, идет на изготовление коровьего масла. Жиры морских млекопитающих и рыб используются в медицине, парфюмерной промышленности, в производстве маргарина и др.
Растительные жирные масла (растительные жиры), получают из семян или плодов растений отжимом или экстрагированием. Плотность растительных жиров составляет 0,90-0,98 г/см3. Бывают твердые, но чаще жидкие. Различают высыхающие (льняное, конопляное), полувысыхающие (подсолнечное, хлопковое) и невысыхающие (касторовое, кокосовое) растительные масла. Многие растительные жиры – важнейшие пищевые продукты. Основная питательная ценность масел определяется высоким содержанием в них триглицеридов высших жирных кислот (до 80-90% в льняном, до 40-50% в подсолнечном), фосфатидов (до 3000 мг% в соевом, до 1400 мг% в подсолнечном), стеринов (до 1000 мг% в кукурузном, до 300 мг% в подсолнечном), токоферолов (100 мг% и более в соевом и кукурузном, до 100 мг% в подсолнечном).
Основными веществами, которые извлекаются из липидов при его гидролизе и которые используются организмом в качестве энергетического источника являются высшие жирные карбоновые кислоты, которые в зависимости от наличия в их структуре двойных химических связей могут быть насыщенными и ненасыщенными.
К насыщенным жирным кислотам относят пальмитиновую кислоту (С15Н31СООН) и стеариновую кислоту (С17Н35COOH). К ненасыщенным жирным кислотам относятся арахидоновая (С19Н31СООН), линоленовая (С17Н29СООН) и линолевая (С17Н31СООН) кислоты.
Часть жирных кислот при необходимости может быть синтезирована в организме, но некоторые жирные кислоты поступают исключительно в составе пищи и не могут быть воссозданы в организме из других веществ. Это так называемые незаменимые жирные кислоты. Незаменимые жирные кислоты – ненасыщенные карбоновые кислоты (арахидоновая, линоленовая и линолевая), необходимые для нормальной жизнедеятельности млекопитающих. В организм человека и животных поступают с пищей в виде растительных масел и животных жиров.
Липидный обмен
Липиды, преимущественно в виде нейтральных триглицеридов, поступая с пищей в двенадцатиперстную кишку, подвергаются эмульгированию желчью с образованием хиломикронов диаметром 5 нм. Под влиянием фермента липазы поджелудочной железы и кишечного сока триглицериды гидролизуются до жирных кислот, моноглицеридов и образуют мицеллы. Жирные и желчные кислоты образуют водорастворимые комплексы (холеинаты), которые, поступая в кишечный эпителий, снова распадаются до жирных кислот. В кишечном эпителии при наличии АТФ осуществляется ресинтез триглицеридов, которые поступают в лимфу в составе липопротеинов. Попадая в кровь, триглицериды частично задерживаются в легких и в дальнейшем подвергаются расщеплению в кровеносном русле ферментом липопротеиновой липазой, которая образуется в стенках сосудов до жирных кислот и глицерина. Жирные кислоты адсорбируются на альбумине и доставляются в жировые депо, где снова ресинтезируются в триглицериды, которые откладываются в виде капель-включений в цитоплазме жировых клеток, например, кожи. Часть жирных кислот доставляется к различным органам и тканям, особенно к печени, где в качестве энергитического субстрата окисляются.
В результате окисления и сопряженного с ним окислительного фосфорилирования[xiv] очень большое количество энергии химических связей свободных жирных кислот аккумулируется в виде молекул АТФ. Так, при окислении одной молекулы пальмитиновой кислоты образуется 130 молекул АТФ, в то время как при окислении молекулы глюкозы синтезируется лишь 38 молекул АТФ. Нарушение гидролиза жиров может быть обусловлено при недостаточном поступлении желчи в двенадцатиперстную кишку, что имеет место при различных патологических процессах. Всасывание холестерина и жирорастворимых витаминов невозможно при отсутствии желчных кислот.
Явление повышения уровня липидов в крови получило название гиперлипопротеинемии. Гиперлипопротеинемия является важным фактором в появлении и развитии дегенеративных изменений сосудов, особенно сердца (коронарный атеросклероз).
Мобилизация жира из жировых депо происходит при дефиците углеводов как важнейшего энергитического субстрата (сахарный диабет, углеводное голодание), что ведет к активации ряда компенсаторных процессов, обеспечивающих расщепление триглицеридов в жировых депо. Жирные кислоты и глицерин поступают в кровь, откуда перемещаются в клетки и в дальнейшем используются в качестве источника энергии. Именно интенсивная мобилизация жира и недостаточное использование углеводов и жирных кислот для синтеза жира при диабете и углеводном голодании способствуют исхуданию.
Холестерин [xv].
Холестерин входит в состав всех фракций крови. Больше всего его в -липопротеинах. Синтез его происходит почти во всех тканях, но больше всего в кишечнике и печени. При избыточном поступлении пищевого холестерина синтез его в печени тормозится по принципу обратной связи. Повышение синтеза холестерина в печени наблюдается при отсутствии желчных кислот. В условиях их дефицита синтез холестерина в слизистой тонкой кишки увеличивается в 5-10 раз.
Основное влияние на уровень холестерина в крови оказывает содержание жира, особенно соотношение насыщенных и ненасыщенных жирных кислот в пище. Так, превалирование ненасыщенных жирных кислот снижает уровень холестерина в крови и повышает выделение желчных кислот.
Важным путем элиминации (выведения) холестерина является синтез из продуктов его распада желчных кислот и удаление их с калом.