Хотя, как утверждают, одни конструкции поддерживают силы небесные, а другие не разваливаются благодаря краске или ржавчине, проектировщик, если он сознает свою ответственность, всегда стремится получить объективные гарантии прочности и устойчивости того, что он предлагает строить. Если он не в состоянии произвести соответствующие расчеты на современном уровне, тогда, очевидно, необходимо либо сделать модель конструкции, либо определить ее размеры, увеличивая в определенном масштабе размеры какого-то уже существующего образца, который оказался удачным.
Именно такими методами пользовались вплоть до самого недавнего времени. Возможно, к ним прибегают еще и сейчас. Но модели хороши лишь тогда, когда мы хотим посмотреть, как будет выглядеть вещь, а для предсказания прочности этот метод слишком ненадежен. Дело в том, что вес конструкции изменяется пропорционально кубу ее размеров. Так, если мы увеличим все размеры вдвое, вес возрастет в 8 раз. Площади же поперечных сечений тех или иных элементов конструкции, которые должны выдерживать нагрузку, изменяются пропорционально квадрату размеров конструкции, и при увеличении всех размеров вдвое площади всех поперечных сечений увеличатся только вчетверо. Поэтому с увеличением размеров напряжения растут линейно. Это означает, что если, например, мы вдвое увеличили все размеры, то получили и удвоенные напряжения со всеми вытекающими отсюда последствиями.
Прочность конструкции, которая может развалиться вследствие разрушения материала, нельзя предсказать, наблюдая лишь поведение моделей или применяя операцию изменения масштаба к уже существующим образцам.
Это правило, установленное Галилеем, известно как "закон двух третей"; оно является веским основанием для применения современных методов расчета при проектировании автомобилей, кораблей, самолетов, станков. Возможно, именно поэтому всех этих конструкций до недавнего времени и не существовало, по крайней мере в их современной форме. Однако при создании больших каменных сооружений мы можем не обращать внимания на закон двух третей, поскольку, как уже говорилось, здания обычно рушатся вовсе не из-за разрушения материала при сжатии. Напряжения в каменной кладке столь малы, что мы можем позволить себе практически неограниченно увеличивать размеры сооружений. Однако в отличие от большинства других конструкций здания разрушаются потому, что их стены теряют устойчивость и опрокидываются, а устойчивость при любых размерах может быть предсказана путем исследования модели. В принципе устойчивость здания сродни устойчивости весов или безмена (рис. 77).
|
Рис. 77. Устойчивость здания подобна устойчивости весов, на нее не влияет изменение масштаба.
Опрокидывающие моменты, действующие на каждую из сторон такого устройства, с изменением размеров будут изменяться как их четвертая степень, и все устройство будет по-прежнему находиться в равновесии. Таким образом, если не заваливается маленькое здание, можно не беспокоиться и об устойчивости его копии, если она увеличена в соответствующем масштабе; именно этот факт лежит в основе "таинств" средневековых строителей, которые сводятся к набору определенных правил и пропорций. Известно, что эти строители использовали сделанные из гипса или сложенные из камня модели, порою их высота достигала 18 м. Такая методика, как правило, оказывалась плодотворной даже в случаях чрезвычайно сложных конструкций, подобных Реймскому кафедральному собору (рис. 78).
|
Рис. 78. Контрфорсы Реймского собора.
В классической греческой архитектуре арки, как правило, не встречаются, им предпочитали каменные балки или перемычки. Растягивающие напряжения в этих балках, или архитравах, были довольно велики и нередко приближались к предельным. Многие из архитравов треснули еще в древние времена. С этим связано армирование мраморных балок железом, например в Пропилеях. Дорические храмы не обваливались благодаря тому, что их короткие и высокие в сечении каменные балки, треснув, превращались в арки (рис. 79 и 80).
Рис. 79. Короткая каменная перемычка (архитрав) под действием растягивающих напряжений, треснув, превращается и арку с тремя шарнирными точками и продолжает держать нагрузку.
Для греческой трабейской[71]архитектуры требовались очень большие каменные блоки. По мере того как цивилизация приходила в упадок, сложнее становилось перевозить большие грузы, возможно, именно это послужило одной из причин пристрастия средневековых строителей к готическим аркам и сводам, которые можно было строить из камней совсем малого размера.
Еще два столетия назад Джон Соун в своих лекциях по архитектуре отметил, что, несмотря на трудности, связанные с применением каменных балок, сооружения древних часто имели гигантские размеры, намного превосходившие современные ему здания. Так, Парфенон, например, значительно больше собора св. Мартина-на-полях[72]. Тем не менее Парфенон, имея размеры 69 на 30 м, невелик по сравнению с построенным Адрианом храмом Зевса Олимпийского (138 г.), размеры которого составляют 108 на 52 м, - он занял бы большую часть Трафальгарской площади. Но и этот храм кажется меньше, чем он есть на самом деле, на фоне находящихся поблизости стен Акрополя (рис. 80). Точно так же впечатляют размеры каменной кладки римских мостов и акведуков.
|
Рис. 80. Развалины храма Зевса Олимпийского в Афинах (видна трещина на архитраве).
К разрушению этих античных конструкций люди приложили руку в значительно большей степени, чем природа, но некоторые из них хорошо сохранились и до наших дней. Однако в постройке этих сооружений древние в большей или меньшей степени следовали известным образцам. Если почему-либо этого не делалось, сооружения нередко оказывались "плохо склеенными". Корабли и повозки древних представляются нам сейчас крошечными и непрочными, а здания новой и необычной формы, подобные римским инсулам, которые представляли собой отдельно стоящие многоквартирные дома, к прискорбию, рушились столь часто, что император Август был вынужден издать закон, ограничивающий их высоту 18 м.