Задача. У мальчика было 90 книг. 28 он поставил на первую полку, 12 на вторую, остальные – на третью. Сколько книг на третьей полке.
Вопрос
Деятельность по решению задачи арифметическим методом включает следующие основные этапы:
1. Анализ задачи.
2. Поиск плана решения задачи.
3. Осуществление плана решения задачи.
4. Проверка решения задачи.
1. Анализ задачи
Основное назначение этого этапа - понять в целом ситуацию, описанную в задаче; выделить условия и требования: назвать известные и искомые объекты, выделить все отношения (зависимости) между ними.
Производя анализ задачи, вычленяя ее условия, мы должны соотносить этот анализ с требованиями задачи, Другими словами, анализ задачи всегда направлен на ее требования.
2. Поиск и составление плана решения задачи
Назначение этого этапа: установить связь между данными и искомыми объектами, наметить последовательность действий.
План решения задачи - это лишь идея решения, его замысел. Может случиться, что найденная идея неверна. Тогда надо вновь возвращаться к анализу задачи и начинать все сначала.
3. Осуществление плана решения задачи
Назначение данного этапа найти ответ на требование задачи, выполнив все действия в соответствии с планом.
Для текстовых задач, решаемых арифметическим способом, используются следующие приемы:
- запись по действиям (с пояснением, без пояснения, с вопросами);
- запись в виде выражения.
Проверка решения задачи
Назначение данного этапа — установить правильность или ошибочность выполненного решения.
Известно несколько приемов, помогающих установить, верно ли решена задача. Рассмотрим основные.
1. Установление соответствия между результатом и условиями задачи.
|
Для этого найденный результат вводится в текст задачи и на основе рассуждений устанавливается, не возникает ли при этом противоречия.
2. Решение задачи другим способом.
Пусть при решении задачи каким-то способом получен некоторый результат. Если ее решение другим способом приводит к тому же результату, то можно сделать вывод о том, что задача была решена верно.
Заметим, что если задача решена первоначально арифметическим способом, то правильность ее решения можно проверить, решив задачу алгебраическим методом.
Не следует также думать, что без проверки нет решения текстовой задачи. Правильность решения обеспечивается прежде всего четкими и логичными рассуждениями на всех других этапах работы над задачей.
Моделирование - один из математических методов познания окружающей действительности, при котором строятся и исследуются модели. Моделирование упрощает процесс познания, так как выделяет и отображает только нужную грань реальности, абстрагируясь от незначимых факторов.
Текстовая задача — это словесная модель некоторой реальной ситуации. Чтобы решить задачу, надо построить ее математическую модель.
Математическая модель — это описание реального процесса на математическом языке.
Моделирование в процессе решения задач
Математической моделью текстовой задачи является числовое выражение (или несколько числовых выражений, если задача решается по действиям) и уравнение (либо система уравнений).
Этапы моделирования в процессе решения текстовой задачи.
|
I этап — перевод задачи на математический язык,
II этап - внутримодельное решение.
III этап - перевод полученного решения на естественный язык. На первом этапе происходит переход от одной модели к другой: от словесной модели (текстовой задачи) к вспомогательным моделям (рисункам, кратким записям, таблицам и др.), а от них к математической модели задачи (числовым выражениям и уравнениям). На втором этапе находятся значения числовых выражений, решаются уравнения. На третьем этапе происходит интерпретация результатов, используя полученное решение, формулируется ответ на вопрос, поставленный в задаче.
Вопрос
В начальном курсе математики изучаются различные взаимосвязи между элементами одного, двух и более множеств. Поэтому учителю надо понимать их суть, что поможет ему обеспечить единство в методике этих взаимосвязей.
Рассмотрим примеры соответствий, изучаемых в начальном курсе математики.
Пример 1. 7 + 6.´
а) (17 – 1): 4; б) (12 + 18): (6-6); в) 2
Пример 2. 1) 2+х =6; 2) х-7=4; 3) 2х=8.
В первом примере мы установили соответствие между заданными выражениями и их числовыми значениями. Во втором выяснили, какое число является решением уравнения.
Все эти соответствия имеют общее – во обоих случаях мы имеем два множества: в первом – это множество из трех числовых выражений и множество N натуральных чисел (ему принадлежат значения данных выражений); во втором – это множество из трех уравнений и множество N натуральных чисел.
Связь (соответствие) между этими множества можно представить наглядно, при помощи графов.
|
N 1 N 2
Полученные множества показывают, что любое соответствие между двумя множествами Х и У можно рассматривать как множество упорядоченных пар, образованных из их элементов. А так как упорядоченные пары – это элементы декартова произведения, то приходим к следующему определению общего понятия соответствия.
Определение. Соответствием между множествами Х и У называется всякое подмножество декартова произведения этих множеств. Соответствия принято обозначать буквами R, P, F, T и др.
Способы задания соответствий
Поскольку соответствие – это подмножество, то его можно задать как любое множество, т.е. либо перечислив все пары элементов, находящихся в заданном соответствии, либо указав характеристическое свойство элементов этого подмножества.
Вопрос
В математике изучают различные виды соответствий. Это не случайно, поскольку взаимосвязи, существующие в окружающем нас мире многообразны. Для учителя, обучающего математике младших школьников, особую значимость имеют взаимно однозначные соответствия.
Определение. Взаимно однозначным соответствием между множествами Х и У называется такое соответствие, при котором каждому элементу множества Х сопоставляется единственный элемент множества У и каждый элемент множества У соответствует только одному элементу множества Х.
Рассмотрим примеры взаимно однозначных соответствий.
Пусть Х – множество кругов, У – множество квадратов и соответствие между ними задано при помощи стрелок.
Это соответствие взаимно однозначное, так как каждому кружку из множества Х сопоставляется единственный квадрат из множества У и каждый квадрат из У соответствует только одному кружку из множества Х.
Пример
Пусть Х – множество действительных чисел, У – множество точек координатной прямой. Соответствие между ними таково: действительному числу сопоставляется точка координатной прямой. Это соответствие взаимно однозначное, так как каждому действительному числу сопоставляется единственная точка координатной прямой и каждая точка на прямой соответствует только одному числу.
В математике взаимно однозначное соответствие между множествами Х и У часто называют взаимно однозначным отображением множества Х на множество У.
Равномощные множества
Определение. Множества Х и У называются равномощными, если между ними можно установить взаимно однозначное соответствие.
Если множества Х и У равномощны, то пишут Х ~ У.
Нетрудно видеть, что множества рассмотренные в предыдущих примерах равномощны.
Равномощными могут быть как конечные, так и бесконечные множества Равномощные конечные множества называют еще равночисленными. В начальном обучении математике равночисленность выражается словами «столько же» и может использоваться при ознакомлении учащихся со многими понятиями. Например, чтобы ввести равенство чисел, сравнивают два множества, устанавливая между их элементами взаимно однозначное соответствие. Например, пишут, что 5 = 5, так как кружков столько же, сколько квадратов.
Понятие равночисленности множеств лежит и в основе определения отношений «больше на …» и «меньше на…». Например, чтобы утверждать, что 6 больше 4 на 2, сравнивают два множества, устанавливая взаимно однозначное соответствие между множеством Х, в котором 4 элемента, и подмножеством У1 другого множества У, в котором 6 элементов, и делают вывод: треугольников столько же, сколько кружков, и еще 2. Другими словами, треугольников на 2 больше, чем кружков.
Х
У1
У
Как уже было сказано, равномощными могут быть и бесконечные множества.
Пример
Пусть Х – множество точек отрезка АВ, У – множество точек отрезка СD, причем длины отрезков различны. Так как между данными множествами можно установить взаимно однозначное соответствие, то множества точек АВ и СD равномощны.
N
A M B
С M’ D
Вопрос
Определение.
Бинарным отношением между элементами множества Х или отношением на множестве Х называется всякое подмножество декартова произведения Х ´ Х.
Бинарные отношения обычно обозначают заглавными буквами латинского алфавита: P, T, S, R, Q и т. д. Итак, если Р–отношение на множестве Х, то Р Ì Х ´ Х.
Множество всех первых элементов пар из Р называется областью определения отношения Р. Множеством значений отношения Р называется множество всех вторых элементов пар из Р.
Например, для отношения «больше на 4», которое рассматривается на множестве Х = {2, 6, 10, 14}, это будут упорядоченные пары (2, 6), (6, 10), (10, 14), а для отношения «делится» — (6, 2), (10, 2), (14, 2).
Можно заметить, что множество пар, которые определяют отношения «больше на 4», «делится», являются подмножествами декартова произведения
Х ´ Х ={(2, 2), (2, 6), (2, 10), (2, 14), (6, 2), (6, 6), (6, 10), (6, 14), (10, 2), (10, 6), (10, 10), (10, 14), (14, 2), (14, 6), (14, 10), (14, 24)}.