Способы задания множеств




Поскольку отношение R между элементами множества Х — это множество, элементами которого являются упорядоченные пары, то его можно задать теми же способами, что и любое множество.

1. Чаще всего отношение R на множестве Х задают при помощи характеристического свойства пар элементов, находящихся в отношении R. Это свойство формулируют в виде предложения с двумя переменными.

Например, среди отношений на множестве Х = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, можно рассматривать следующие: «число х меньше числа у в 2 раза», «число х — делитель числа у», «число х больше, чем число у» и другие.

2. Отношение R на множестве Х можно задать и путем перечисления всех пар элементов множества Х, связанных отношением R.

Например, если записать множество пар (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4), то на множестве Х = {1, 2, 3, 4} мы зададим некоторое отношение R. Это же отношение R можно задать и

3. при помощи графа

Граф отношения «меньше» на множестве Х=(2,4,6,8)

Вопрос


 

Вопрос

Определение. Отношение R на множестве Х называется отношением- эквивалентности, если оно рефлексивно, симметрично и транзитивно.

Пример. Рассмотрим отношение «х-однокурснику» на множестве студентов педфака. Оно обладает свойствами:

1. рефлексивности, т.к. каждый студент является однокурсником самому себе;

2. симметричности, т.к. если студент х-является однокурсником студента-у, то и студент-у-является однокурсником студента-х;

3. транзитивности, т.к. если студент х- однокурснику, а студенту– однокурсник -z, то студент- х будет однокурсником студента-z.

Таким образом, данное отношение обладает свойствами рефлексивности, симметричности и транзитивности, а значит, является отношением эквивалентности. При этом множество студентов педфака можно разбить на подмножества, состоящие из студентов, обучающихся на одном курсе. Получаем 5 подмножеств.

Отношением эквивалентности являются также, например, отношение параллельности прямых, отношение равенства фигур. Каждое такое отношение связано с разбиением множества на классы.

Теорема. Если на множестве-Х-задано отношение эквивалентности, то оно разбивает это множество на попарно непересекающиеся подмножества (классы эквивалентности).

Верно и обратное утверждение: если какое-либо отношение, заданное на множестве Х, порождает разбиение этого множества на классы, то оно является отношением эквивалентности.

Пример. На множестве-Х= {1; 2; 3; 4; 5; 6; 7; 8} задано отношение «иметь один и тот же остаток при делении на 3». Является ли оно отношением эквивалентности?

Построим граф данного отношения: (самостоятельно)

Данное отношение обладает свойствами рефлексивности, симметричности и транзитивности, следовательно, является отношение эквивалентности и разбивает множество Х на классы эквивалентности. В каждом классе эквивалентности будут числа, которые при делении на 3 дают один и тот же остаток:Х1= {3; 6},Х2= {1; 4; 7},Х3= {2; 5; 8}.

Считают, что класс эквивалентности определяется любым своим представителем, т.е. произвольным элементом этого класса. Так, класс равных дробей можно задать, указав любую дробь, принадлежащую этому классу.

В начальном курсе математики также встречаются отношения эквивалентности, например, «выражения х – и- у имеют одинаковые числовые значения», «фигура- х-равна фигуре - у».


 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-04-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: