Перспективные методы модификация




 

Современные тенденции развития в производстве изготовления резинотехнических изделий для автомобилестроения.

Основными мероприятиями по совершенствованию технологического процесса являются: обновление действующих машин и оборудования; изготовление РТИ требуемого качества (в этой связи эффективно применение в процессе производства новых материалов и широкое внедрение достижений науки во все отрасли народного хозяйства); снижение затрат на производство РТИ; обеспечение гибкости производства.

Изготовление РТИ требуемого качества.[8]

Качество РТИ должно соответствовать требованиям, как производителей автомобилей, так и потенциальных покупателей. Необходимо также учитывать тенденции мирового производства РТИ. Требования к качеству, учитываются конструкторами РТИ при их создании.

Технологи должны обеспечить изготовление РТИ заложенного в проекты качества РТИ; для этого необходимо иметь на предприятии соответствующие технологии и оборудование.

Снижение затрат на производство РТИ.При этом имеется в виду снижение затрат без ущерба для качества продукции и его стабильности - использование процессов и оборудования, обеспечивающих меньшие отходы и потери материалов, экономное расходование энергоресурсов, уменьшение затрат труда как на основные, так и на вспомогательные операции. Сокращение запасов материалов, полуфабрикатов, деталей - принцип «тощее производство» (lean production) также позволяет снизить затраты.

Гибкость производства.

Гибкость производства, т.е. быстрая перестройка производства для выпуска других моделей или размеров РТИ, позволяет быстро реагировать на требования рынка. При этом необходима автоматизация вспомогательных операций переналадки и перенастройки оборудования.

Ивановым Ю.М. предложено использовать в качестве уплотнительного материала гранулированные полимеры, например, композицию из полиамида и резиновой крошки или гранулированного полимера с упругими свойствами, например, резина или полиуретан или гранул полимера выполненных в виде тонких пластин - чешуй. В состав уплотнительного материала может быть введена смазка.

Истоминым С. А., Котенковым В. В., Греховым А. Ф., Зародыш Д. В. И др. исследователями ЗАО «Нефтьстальконструкция» разработан сальник задвижки, включающий шпиндель с азотированной поверхностью, кольцо сальника, набивку, разделительное кольцо и грундбуксу, отличающийся тем, что кольцо сальника, разделительное кольцо и грундбукса предварительно химико-термически обработаны азотированием или карбонитрированием до твердости поверхностного слоя HV=700-1000.

На заводах РТИ неизбежно образование отходов производства. Это остатки сырья и материалов, продукция, не отвечающая требованиям технических условий или стандартов. Сырье и материалы, используемые для производства РТИ, дефицитны, их стоимость составляет 60-96% стоимости получаемых изделий, поэтому отходы необходимо утилизировать, возвращая их в производственный цикл или изготовляя из них изделия. В последнем случае отходы становятся вторичным сырьем. Вторичными материальными ресурсами могут быть не только отходы производства, но и отходы потребления, например различные амортизованные изделия из резины Резину относят к химически активным твердым промышленным отходам. В естественных условиях резина представляет собой стойкий к механическому воздействию материал, который почти не подвергается разложению микроорганизмами, стоек к воздействию света, атмосферных осадков, медленно окисляется кислородом воздуха и поэтому сохраняется практически очень долго. [19]

Захоронение отходов на полигонах производится с соответствие с «Санитарными правилами проектирования, строительства и эксплуатации полигонов».

Одной из причин, сдерживающих использование отходов в отрасли, являются то, что продукция, традиционно изготавливающаяся из отходов, в последнее время пользуется ограниченным спросом, а разработка новых видов продукции ведется медленно и в небольшом объеме. Недостаточно изучен рынок сбыта промышленных отходов РТИ, узок ассортимент изготавливаемых из отходов изделий.

Механическая переработка вулканизованных и невулканизованных резиновых отходов состоит в их дроблении различными способами. Конечным продуктом переработки является резиновая крошка различной дисперсности: от 1 мм до 10 мкм.

В последнее время появились новые направления использования отходов производства РТИ. По разработке ПО «Казаньрезинотехника» и Зеленодольского производственного фанерного объединения сборную резиновую крошку размером 1,0-2,0 мм можно применять для изготовления резинофанерного тарного и строительного материала, являющегося заменителем обычной фанеры и обладающего рядом ценных свойств, превосходящих свойство обычной фанеры. Такая резиновая фанера (резофан) не коробится при воздействии сырости и влаги, имеет значительную гибкость, обладает хорошими диэлектрическими свойствами. Срок службы резофановой тары значительно выше срока службы обычной деревянной тары.

Новый, наиболее перспективный способ использования вулканизованной крошки - обработка ее в смеси с алкилфенолоформальдегидными смолами. По этому способу резиновую крошку смешивают с небольшими количествами смолы и другими добавками, из смеси формуют и вулканизуют изделия. Из отходов ПВХ и отходов вулканизатов на основе наирита и бутадиеннитрильных каучуков можно изготавливать технические пластины для полов с хорошей поверхностью, отсутствием хрупкости, достаточной жесткостью и прочностью, а также изделия типа шифера. Некондиционные профилированные заготовки с такими дефектами, как включения подвулканизованной резины и загрязненная поверхность, или не прошедшие физико-механический контроль, не могут повторно перерабатываться в изделия заданного назначения и используются при профилировании малоответственных изделий, либо передаются в цех переработки отходов для изготовления шпальных пластин, ковриков и др.

Степень загрязнения приземного слоя атмосферного воздуха вредными веществами определяют по наибольшему рассчитанному значению концентраций вредных веществ - предельно допустимой концентрации (ПДК). Большинство процессов изготовления и переработки резиновых смесей сопровождается выделением газов, пыли, представляющих собой многокомпонентные смеси. Эти выделения токсичны и удаляются из производственных помещений с помощью вытяжной вентиляции.

При изготовлении уплотнителей выбросы в атмосферу загрязняющих веществ не превышает установленных ПДК для атмосферного воздуха населенных мест. Технологический процесс исключает возможность аварийных и залповых выбросов в атмосферу.

Для улучшения воздушной среды в цехах заводов РТИ существуют два пути: первый - снижение количества выделений летучих веществ, при изготовлении резин, в основном при вулканизации, второй - усиление и рациональное размещение приточно-вытяжной вентиляции. А в идеальном случае - создание «интеллектуальной» вентиляции, т.е. такой системы, при которой автоматически включаются только необходимые в данный момент терминалы.

Наиболее перспективным и осуществимым с современных позиций представляется путь снижения газовыделений и выбросов в атмосферу за счет совершенствования рецептуры и технологии. Так, интенсивность газовыделений можно снизить в десятки раз при быстром охлаждении водой готовых изделий, извлекаемых из горячих пресс-форм. Того же можно достичь и подбором ингредиентов, не выделяющих вредные вещества или выделяющих их в меньших количествах, например заменой серных вулканизующих систем на пероксидные, или, в частности, бифургина при вулканизации БНКС-18 на бисфенольные системы, что снижает количество газовыделений в 100 раз.

Современное состояние сырья для производства резинотехнических изделий.

Улучшение свойств резиновой смеси.

Была разработана новая резиновая смесь повышенной прочности и твердости. С сохранением технологических свойств при изготовлении и экструзии и обеспечением монтажных и эксплуатационных свойств сальников.

Поставленная цель была достигнута, в результате замены резиновой смеси бутодиен - нитрильный каучук на комбинацию бутадиен - стирольного каучука с содержанием 23 -24% связанного стирола и бутадиен - стирольного каучука с содержанием 63 - 64% связанного стирола. Также содержит парафинонафтеновое масло - пластификатор и дополнительно - техническую добавку, включающую смесь насыщенных жирных кислот, безводную смесь жирных кислот.

Полученная резиновая смесь имеет лучшие характеристики повышенную прочность и жесткость, хорошую технологичность при изготовлении.

Резинотехнические изделия, изготовленные из данной резиновой смеси, имеют необходимые монтажные и эксплуатационные свойства. [5]

Пластификация бутадиен - нитрильных каучуков.

Требования к эффективности пластификатора для нитрильных каучуков обусловлены, в первую очередь, необходимостью повышения морозостойкости нитрильных резин, что связанно с концентрационной зависимостью температуры стеклования пластифицированного эластомера. Для большей эффективности пластификатора необходимо, чтобы он имел низкую температуру стеклования. Однако эффективность пластификатора связана и с его термодинамической совместимостью с каучуком, так как при ограниченной совместимости полимера и пластификатора температура стеклования обычно снижается только в пределах диапазона концентраций, в котором полимер и пластификатор смешиваются.

Под эффективностью пластификатора можно также понимать степень его воздействия на механические свойства полимеров. При введение пластификатора в состав резин снижаются их модуль и прочность, увеличиваются разрывные деформации. Это часто связанно с температурной стеклования пластификатора.

Анализ литературных данных позволил предположить, что при постоянстве концентрации пластификатора в системе относительному увеличению модуля и прочности пластифицированного эластомера будет способствовать некоторое ухудшение сродства пластификатора к каучуку за счет ввода в «хороший» пластификатор некоторого количества вещества, плохо совмещающегося с данным каучуком.

Другая возможность повышения модуля пластифицированных полярных каучуков предлагается в работе [10]. Она основана на использовании концентрации сетки межцепных лабильных физических связей. Степень снижения плотности такой сетки при пластификации связанна не только с общей концентрацией пластификатора в системе, но и с концентрацией протоноакцепторных групп в молекуле пластификатора. Использование малополярных веществ в составе пластификаторов снижает концентрацию этих групп, разрушающих межцепные связи, что должно повышать относительное значение модуля пластифицированных полярных каучуков при одинаковой доле пластификатора в системе.

Бутадиен-нитрильные каучуки различной микроструктуры.

В настоящее время ассортимент изделий и материалов, при изготовлении которых используют бутадиен-нитрильные каучуки, насчитывает более сотни тысяч наименований. Доля потребления БНК в промышленности составляет около 10% от общего объема потребления всех синтетических каучуков. Это обусловлено комбинацией маслобензостойкости БНК при относительно невысокой стоимости.

В последнее время в отечественной промышленности вместо сульфональных каучуков типа СКН используют парафиновые каучуки типа БНКС; расширяется ассортимент и увеличивается потребление зарубежных марок БНК.

Несмотря на близкую химическую природу каучуков СКН и БНКС между ними имеется ряд различий, вызывающих необходимость корректировки рецептуры и технологических параметров процесса изготовления резин.

При сравнительном анализе микроструктуры бутадиен-нитрильных каучуков было установлено, что во всех каучуках основную долю звеньев бутадиена составляют звенья 1,4 (около 87-91%), причем в основном транс - 1,4 (около 74-80% от общего числа бутадиеновых звеньев.) Относительная доля транс - 1,4 - звеньев бутадиена несколько растет с увеличением содержания нитрильных групп.

Молекулы бутадиен-нитрильных каучуков, содержащие 1,4 - цис- и 1,4 - транс-звенья бутадиена, имеют различную подвижность и разный уровень межмолекулярного взаимодействия. Энергия межмолекулярного взаимодействия между нитрильными группами в сополимерах, содержащих 1,4 - транс-звенья бутадиена, выше вследствие более плотной упаковки и меньшей локальной подвижности. [24]

Повышение озоностойкости резин на основе бутадиен-нитрильных каучуков.

Локальное протекание термоокислительных процессов в резинах на основе комбинаций каучуков, прежде всего в межфазных областях, определяет необходимость использования технических приемов защиты резин от старения. Ранее основным способом было перенасыщение одного из каучука противостарителем. Технологические принципы определяющие условия постепенного пополнения противостарителем граничных слоев, могут быть использованы не только для неполярных эластомеров, но и для композиций бутадиен-нитрильных каучуков (БНК) с поливинилхлоридном (ПВХ), причем последнему отводится роль насыщенной противостарителем фазы.

Насыщение осуществляли через стадию образования пластизолей ПВХ с последующей их желатинизацией. Желатинизация и аминирование способствуют уменьшению нерационального расхода противостарителя, вызванного высокой скоростью его диффузии в поверхностные слои изделия с последующим испарением.

При изучении озоностойкости вулканизатов бутадиен-нитрильного каучука используют - ПД-1 (ТУ 38-303-31-98 «ПД-1-полимерная противостарительная паста»). В большей степени положительное влияние ПД-1 оказывает на резины в условиях термоокислительного старения. Так, более выражено пролонгирующее действие ПД-1, чем в случае комбинации диафена ФП и нафтама-2. После старения в течение 72 часов изменение свойств вулканизатов примерно одинаково, затем в интервале от 72 до 240 часов в случае смеси диафена ФП и нафтама-2 отставание от ПД-1 в обеспечении защитных функций увеличивается. [16]

Бутадиеннитрилстиролкарбоксилатный каучук СКНС-26-30-1.

Эпоксидные композиции БНК и СКНС хорошо известны. Благодоря высокой полярности БНК каучук совмещается с компонентами эпоксидной композиции, но именно высокая поляризуемость БНК ухудшает электроизоляционные свойства композиций. Снижение содержания связанного нитрила акриловой кислоты (НАК) в каучуке улучшает диэлектрические свойства композиции. Повысить диэлектрические свойства удалось в результате замены части звеньев связанного бутадиена в карбоксил содержащем БНК на звенья связанного стирола. В качестве оптимального варианта был разработан каучук СКН-26-30-1. Каучук получают методом водно-эмульсионной сополимеризации бутадиена, НАК, стирола и метакриловой кислоты. Каучук имеет высокие диэлектрические свойства: диэлектрическая проницаемость при частоте тока 1000 Гц не более 4,5. Резина на основе каучука СКНС-26-30-1 имеет высокую устойчивость к тепловому старению, более высокую, чем у БНК с близким содержанием НАК, устойчивость к набуханию в органических средах, высокую прочность и сопротивление раздиру. [13]

Нитриласт - новые бутадиен-нитрильные каучуки.

ОАО «Воронежсинтезкаучук» по оригинальной технологии приступило к производству нового бутадиен-нитрильного каучука.

В новом процессе получения композиционно-однородных каучуков Нитриласт в качестве эмульгатора используют соли кислот таллового масла, которые не приводят к загрязнению окружающей среды.

Нитриласты в отличии от СКН содержат органические кислоты и их соли, они способствуют определенному распределению наполнителей и других ингредиентов, а также влияют на технологию переработки резиновых смесей.

При использовании каучуков Нитриласт следует учитывать состав и содержание защитной группы в резиновой смеси: в каучуке содержится значительное количество свободных кислот, которые могут взаимодействовать с аминным стабилизатором. Нитриласт имеют преимущество по сравнению с серийно выпускаемыми каучуками, по прочностным свойствам, морозостойкости, динамической выносливости и др. [15]

Использование смеси диафена ФП и ДФФД.

В производстве резиновых изделий для замедления процесса старения используют аминные стабилизаторы - N-изопропил-N-фенил-n-фенилендиамин (диафен ФП) и N, N '-дифенил - n - фенилендиамин (ДФФД). Однако данные стабилизаторы имеют ряд недостатков, прежде всего пыление компонентов на подготовительных производствах предприятий резиновой промышленности. Потеря массы стабилизаторов при этом достигает 2%. Ежегодные потери компонентов серных вулканизирующих систем и стабилизаторов от пыления на предприятиях резиновой промышленности составляют несколько десятков тысяч в год.

Существенным недостатком диафенаФП является его неравномерное распределение в резиновой смеси. Это приводит к быстрой миграции стабилизатора на поверхность резиновых изделий с последующим выделением в окружающую среду. При использовании смеси диафена ФП и ДФФД характерен синергетический эффект, что повышает устойчивость резин к озонному старению и снижает миграцию диафена ФП на поверхность резинотехнических изделий.

Молекулы диафена ФП могут длительное время находиться в поверхностном слое резин из-за образования связанных водородными связями полимерных форм с молекулами ДФФД, не способных к миграции на поверхность из-за больших размеров. [21]

Влияние структурности высокопористого печного техуглерода на усиление эластомеров.

В серных вулканизатах переходные слои взаимодействуют между собой с образованием углерод-каучуковых цепочечных структур, а в смоляных вулканизатах с наиритом в качестве активатора вулканизации преобладает сегментальное взаимодействие этих слоев со свободным эластомером среды. Однако с увеличением степени наполнения доля последнего уменьшается вплоть до полного исчезновения в результате связывания углеродной поверхностью, а также в результате окклюдированния в межагргатных пустотах при повышении структурности тех углерода, т.е. при переходе от П36Э к П267-Э и далее к наиболее электропроводящему П399-Э.

В случае резин на основе каучука БНКС-28АМН с 2 мас. ч. серы и 1 мас. ч. сульфенамида Ц максимальная прочность достигается при содержании техуглерода П366-Э или П267-Э 40-60 мас. ч. на 100 мас. ч. каучука. При этом в области высоких наполнений наблюдается второе повышение прочности при снижении относительного удлинения до уровня, характерного для пластмасс (40-80%), что свидетельствует о переходе всего каучука в связанное и окклюдированное состояние. Уникальную способность резин с П399-Э сохранять высокую прочность в широкой области наполнений (от 20 мас. ч. до максимально возможной) можно объяснить значительным снижением доли свободного эластомера, а также соотношения связанного и окклюдированного эластомеров в результате окклюдированния не только в межагрегатных пустотах, но и внутри сферических частиц техуглерода.

Характер влияния структурности высокопористого техуглерода на усиливающий эффект зависит от состава вулканизующей группы. При оптимальной степени наполнения прочность при растяжении серных вулканизатов растет с увеличением степени диспергирования техуглерода, а смоляных - с увеличением количества окклюдированного эластомера со смещением оптимума наполнения в область более высоких значений. В обоих случаях с повышением структурности техуглерода расширяется область оптимального наполнения эластомера. [25]

Новый углеродный наполнитель для технических резин.

В производстве РТИ изучен новый кремнеуглеродистый наполнитель - шунгит, представляющий собой измельченную горную породу типа Ш-Х-К.

Особенности структуры и состава шунгита не позволяют рассматривать его в качестве усиливающего наполнителя. Введение шунгита в состав наполненных техуглеродом резин в отсутствии традиционно применяемых пластифицирующих добавок улучшает перерабатываемость резиновых смесей, повышает их упруго-деформационные и конфекционные свойства. Резиновые смеси наполненные шунгитом характеризуются повышенной скоростью структурирования, что вызывает необходимость корректировки вулканизующей системы в сторону снижения содержания ускорителя вулканизации. Применение нового углеродного наполнителя позволяет снизить каучукосодержание резин при сохранении их качества, что является актуальным в условиях непрерывного роста стоимости полимеров. [26]

Применение полимерной серы находящейся в метастабильном состоянии.

Полимерная сера нашла широкое применение в производстве резинотехнических изделий. Сера принадлежит к веществам, которые в свободном состоянии образуют несколько аллотропных форм с ограниченной термостабильностью. Наиболее распространена полимерная сера или альфа - форма - устойчивые при тобычной температуре прозрачные желтые кристаллы ромбической системы. Ромбическая сера имеет плотность 2070 кг/м3 и температуру плавления 112,8 С; она легко растворяется в сероуглероде и частично в каучуке.

Для введения в резиновые смеси используют серу в тонкодисперсном состоянии.

Молотая сера получается дроблением комовой серы с последующим отвеиванием. Состав и свойства молотой серы не отличаются от состава и свойств комовой серы, из которой она получена.

Однако ее применение в качестве вулканизующего агента вызывает ряд технологических трудностей, связанных с плохой текучестью порошка, повышенным пылеобразованием, способностью накапливать электростатический заряд и неудовлетворительной диспергируемостью в каучуке, что частично устраняется масло наполнением. Повышение технологичности применения полимерной серы, несмотря на тридцатилетнюю практику ее использования, по-прежнему остается актуальной задачей.

Разработан способ получения тонких дисперсий полимерной серы в резиновых смесях, предусматривающий применение вулканизующего агента в метастабильном состоянии. Это особенно актуально при замене компрессионного прессования на литье под давлением. Метастабильное состояние характерно для пересыщенных растворов; полимерная сера после стабилизации и закалки представляет собой пересыщенный раствор в циклооктасере, единственном известном для полимерной серы растворителе.

Известно, что метастабильное состояние термодинамически неустойчиво, но способно достаточно длительно сохраняться во времени. Применительно к полимерной сере это проявляется в том, что она находится в высокоэластическом состоянии в течении 10 суток. Поэтому практически задача тонкого диспергирования значительно упрощается, так как в данном случае речь идет о смешении двух эластомеров. Эксперимент показал, что применение полимерной серы в метастабильном состоянии позволяет получить вулканизаты, не уступающие по физико - механическим характеристикам вулканизатам на основе полимерной серы. При этом исключаются технологические трудности, связанные с эксплуатацией ромбической серы в производстве полимерной серы и с применением вулканизующего агента в порошкообразном виде с высокой степенью помола. [22]

Особенности стабилизации полимерной серы.

Стабилизированная полимерная сера представляет собой не выцветающий агент вулканизации. Ее получают из расплавов циклоокто серы, вводя в них специальные соединения - «стабилизаторы». Эффективный стабилизатор полимерной серы является гексахлор-пара-ксилол (ГХК).

Сера реагирует с ГКХ с образованием производных бензотиофена и хлорсульфанов. Синтез происходит по механизму инициируемой радикальной полимеризации, в качестве инициатора выступают хлорсульфаны.

Схема протекания реакции:

1) Сера взаимодействует с ГХК с образованием полихлорбензотиафена и хлорсульфанов

2) CCl x Cl являются неустойчивыми соединениями и легко распадаются на радикалы

3) Образовавшиеся по реакции 1 радикалы в момент выделения инициируют процесс полимеризации серы

4) Обрыв растущих полимерных цепей.

На каждую молекулу полимерной серы приходится в среднем два атома хлора, которые расположены по ее концам. [12]

Стабилизация полимерной серы бромом.

Полимерная сера является, метастабильным аллотроном серы и для ее стабилизации используют достаточно эффективные стабилизаторы, также как галогены или соединения, являющиеся донорами галогенов. Стабилизирующий агент вводят на различных стадиях процесса получения полимерной серы в расплав во время полимеризации или на стадиях закалки и экстракции растворимой серы. В качестве закалочной серы используют природный минеральный раствор хлорида магния (биофит), который содержит около 0,5% бромида магния. Стабилизация полимерной серы происходит ввиду насыщения электронной плотности концевых групп макромолекул. Закалку расплава проводят при температуре ниже 0 оС. В результате получают полимерную серу с выходом 40-45%. После экстракции растворителем выделяют термостабильный продукт, содержащий более 98% полимерной серы. [27]

Микрокапсулированная сера - заменитель полимерной серы.

Микрокапсулированние ромбической серы позволяет предотвратить выцветание серы на поверхности резиновых заготовок. Микрокапсулированную серу получают путем заключения ромбической серы в полимерную оболочку. Оптимальное содержание полимера в оболочке, обеспечивающее замедление выцветания серы на поверхность резиновых смесей. Испытания показали, что резиновые смеси и вулканизаты, содержащие микрокапсулярную серу, практически не уступают эталону по всему комплексу свойств: конфекционным свойствам, клейкости, физико-механическим показателям. [23]

Композиционные эластомеры.

С целью получения каучуков нового типа применяются как специальные каталитические системы так и непосредственное смешение растворов полимеров с образованием вулканизующих композиций нового состава.

Большой интерес представляет СКД - 16, являющийся смесью эластомеров, полученных в присутствии титанового (СКД-1) и лактаноидного (СКД-6) катализаторов. Вулканизаты на основе СКД-16 обладают более высокими прочностными показателями. Кроме того, СКД-16 характеризуется повышенным содержанием цис - 1,4 - звеньев по сравнению с СКД-1, которое может быть согласованно с каждым конкретным потребителем. Смешение растворов двух цис - 1,4 - полубутадиенов позволяет решить проблемы понижения морозостойкости, высокой пластичности, характерные для СКД-6. [17]

Новые пластификаторы для резин на основе полярных каучуков.

ДАЭНДК - смесь сложных эфиров, полученных переэтерификацией диметиловых эфиров, низших дикарбоновых кислот С4 - С6 (адипиновой, глутаровой, янтарной) со смесью спиртов С1 - С20;

ТХЭФ - трихлорэтилфосфат;

ЭДОС - смесьдиоксановых спиртов и их высококипящих эфиров;

ДБЭА - дибутоксиэтиладипинат;

ПЭФ-1 - смесь монофениловых эфиров полиэтиленгликоля (мол. масса 140-190).

Установлено, что при смешение с каучуками новые продукты не вызывают технологических осложнений, не ухудшают технологичность резиновых смесей при их переработки. Пластификаторы ТХЭФ и ПЭФ-1 в большей мере влияют на кинетику вулканизации, чем другие пластификаторы; эти пластификаторы несколько повышают физико-механические показатели смесей и практически не влияют на изменение свойств вулканизатов под воздействием повышенных температур и агрессивных жидкостей. Морозостойкость вулканизатов, содержащих ДАЭНДК, сохраняется на уровне резин, содержащих ДБС, а для резин, включающих остальные пластификаторы, сохраняется на уровне вулканизатов, содержащих ДБФ, или несколько снижается. Использование ПЭФ-1 уменьшается индукционный период вулканизации резиновых смесей на основе БНК. [18]

 

Состав резиновой смеси

техническая резина каучук пластина

Основой любой резины служит каучук натуральный или синтетический, который и определяет основные свойства резинового материала.

Синтетический каучук в промышленном масштабе впервые получен в 1931 году в СССР по способу Лебедева. На полузаводской установке было получено 260 кг синтетического каучука из дивинила, а в 1932 году впервые в 1932 году впервые в мире осуществлен его промышленный синтез. В Германии каучук был синтезирован в 1936-1937 годах, а в США - в 1942 году.

Натуральный каучук (НК) является полимером изопрена (С5Н8)n. Он растворяется в жирных и ароматических растворителях (бензине, бензоле, сероуглероде и др.), образуя вязкие растворы, применяемые в качестве клеев. При нагреве выше 80-1000С каучук становится пластичным и при 2000С начинает разлагаться. При температуре -700С НК становится хрупким. Обычно НК аморфен, однако при длительном хранении возможна его кристаллизация. Для получения резины НК вулканизуют серой. Резины на основе НК отличаются высокой эластичностью, прочностью, водо- и газонепроницаемостью, высокими электроизоляционными свойствами. [5]

Синтетический каучук бутадиеновый (дивинильный) (СКБ), формула полибутадиена (C4Н6)n. Он является некристаллизующимся каучуком и имеет низкий предел прочности при растяжении, поэтому в резину его основе необходимо вводить усиливающие наполнители. Морозостойкость бутадиенового каучука невысокая (от -40 до -450С). Он набухает в тех же растворителях, что и НК. [5]

Стереорегулярный дивинильный каучук (СКД) по основным техническим свойствам приближается к НК. Дивинильные каучуки вулканизуются серой аналогично НК.

Бутадиенстирольный каучук (СКС) - получается при совместной полимеризации бутадиена (С4Н6) и стирола (СН2=СН-С6Н5). Это самый распространенный каучук общего назначения. [5]

В зависимости от процентного содержания стирола каучук выпускают нескольких марок: СКС-10, СКС-30, СКС-50. Свойства каучука зависят от содержания стирольных звеньев. Так, например, чем больше стирола, тем выше прочность, но ниже морозостойкость.

Синтетический каучук изопреновый (СКИ) - продукт полимеризации изопрена (С5Н8). Получение СКИ стало возможным в связи с применением новых видов катализаторов. По строению, химическим и физико-химическим свойствам СКИ близок к натуральному каучуку. Промышленностью выпускаются каучуки СКИ-3 и СКИ-ЗП, наиболее близкие по свойствам к НК.

Бутадиеннитрильный каучук (СКН) - продукт совместной полимеризации бутадиена с нитрилом акриловой кислоты;

 

СН2-СН=СН-СН2-СНСN-

 

В зависимости от состава каучук выпускают следующих марок: СКН-18, СКН-26, СКН-40. Зарубежные марки: хайкар, пербунан, буна-N и др. Присутствие в молекулах каучука группы CN сообщает ему полярные свойства. Чем выше полярность каучука, тем выше его механические и химические свойства и тем ниже морозостойкость. Вулканизуют СКН с помощью серы. Резины на основе СКН обладают высокой прочностью, хорошо сопротивляются истиранию, но по эластичности уступают резинам на основе НК, превосходят их по стойкости к старению и действию разбавленных кислот и щелочей.

Полисульфидный каучук или тиокол образуется при взаимодействии галоидопроизводных углеводородов с многосернистыми соединениями щелочных металлов:

 

СН2-СН2-S2-S2-

 

Тиокол вулканизуется перекисями. Присутствие в основной цепи макромолекулы серы придает каучуку полярность, вследствие чего он становится устойчивым к топливу и маслам, к действию кислорода, озона, солнечного света. Сера так же сообщает тиоколу высокую газонепроницаемость (выше, чем у НК), поэтому тиокол - хороший герметизирующий материал. Механические свойства резины на основе тиокола невысокие.

Также существуют акрилатные, фторсодержащие каучуки, синтетический каучук теплостойкий, бутилкаучук, полиуретановые каучуки и др.

Для получения резиновой смеси 7-57-9003 используют хлоропреновый каучук, на основе которого производят маслобензостойкие резины.

Наирит является отечественным хлоропреновым каучуком. Хлоропрену соответствует формула СН2=ССl-СН=СН2. Вулканизация может проводиться термообработкой даже без серы, так как под действием температуры каучук переходит в термостабильное состояние.

Хлоропен - бесцветная жидкость, кипящая при 590С. Он самопроизвольно легко полимеризуется, образуя сначала пластическую массу, сходную с невулканизированным каучуком, а в дальнейшем - твердый продукт:

 

СН2=СН-ССl=СН2 + СН2=СН-ССl=СН2 + СН2=СН-ССl=СН2 +...→

→...СН2-СН=ССl-СН2-СН2-СН=ССl-СН2-... -СН2-СН=ССl-СН2-...

 

Такое строение доказывается тем, что при окислении этого вида синтетического каучука образуется янтарная кислота, формула которой СООН-СН2-СН2-СООН. Места разрыва углеродной цепи показаны на схеме пунктиром.

Резины на основе наирита обладают высокой эластичностью, вибростойкостью, озоностойкостью, устойчивы к действию топлива и масел, хорошо сопротивляются тепловому старению, так как окисление каучука замедляется экранирующим действием хлора на двойные связи.

За рубежом полихлоропреновый каучук выпускается под названием неопрен, пербунан-С и др.

Добавки резиновых смесей

Для улучшения физико-механических свойств каучука вводятся различные добавки (ингредиенты). Таким образом, резина состоит из каучука и ингредиентов, рассмотренных ниже:

1. Вулканизирующие вещества (агенты) участвуют в образовании пространственно-сетчатой структуры вулканизата. Обычно в качестве таких веществ применяют серу и селен, для некоторых каучуков перекиси.

. Ускорители процесса вулканизации; полисульфиды, оксиды свинца, магния и другие влияют как на режим вулканизации, так и на физико-механические свойства вулканизатов. Ускорители проявляют свою наибольшую активность в присутствии оксидов некоторых металлов (цинка и др.), поэтому в составе резиновой смеси активаторами. [11].

В качестве ускорителя вулканизации в процессе изготовления резиновой смеси 9003, как уже приводилось ранее, используются дифенилгуанидаин и тиазол (альтакс).

Введение минерального масла в суспензию ускорителей вулканизации резин дифенилгуанидаина и бензтиазолдисульфида в количестве до 4% к сухому продукту и при оптимальной влажности паст (40 и 45% соответственно) позволяет увеличить насыпную плотность гранул до 425 кг/м3 и подавить пылящую способность продуктов.

Уплотнение гранул способствует уменьшению пыления в процессе применения и рациональному использованию тары и транспортных средств. Уплотнение их возможно как подбором оптимального отношения длины к диаметру, так и применением пластифицирующих добавок, которые не ухудшали бы показатели качества уплотняемого продукта, и еще лучше, если они применяются в резиновой смеси.

Известно, что трансформаторное и вазелиновое масла весьма эффективно работают в снижении пылящей способности и красителей.

В технологии резин в резиновую смесь вводят пластификаторы в количестве от 2 до 15% от массы каучука. В качестве пластификатора служат минеральные масла. Ранее было показано, что введение 1,5-2% трансформаторного или вазелинового масел к массе сухого продукта полностью подавляет пылящую способность порошка дифенилгуанидина - ускорителя вулканизации резин. Кроме того, они снижают пожаро- и взрывоопасность пылевоздушных смесей: минимальная энергия зажигания возрастает с 9,3 до 21 МДж, а нижний предел воспламенения с 37 до 58 г/м3. Это дает возможность сушить пасту дифенилгуанидина в потоке воздуха без разбавления его инертным газом. Образцы обеспыленного порошка дифенилгуанидина успешно прошли испытания в резиновой смеси.

Ускорители вулканизации резин вводят в виде порошка или гранул. На рынке ускорителей резин имеется потребность в дибензтиазолдисульфиде (тиазол 2МБС) в виде гранул Ш 2,5 мм с насыпной плотностью на уровне 400 кг/м3. Выпускаемый российской промышленностью тиазол 2МБС имеет насыпную плотность 150-180 кг/м3.

 


Заключение

 

Как и в других отраслях промышленности, в производстве сальников технология призвана воплощать в производственную практику конструкторски



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-03-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: