Общие признаки, функции, классификация




МОГИЛЕВСКИЙ ГОСУДАРСТВЕННЫЙ

УНИВЕРСИТЕТ ПРОДОВОЛЬСТВИЯ

Кафедра химической технологии

высокомолекулярных соединений

 

 

БИОЛОГИЧЕСКАЯ ХИМИЯ

КОНСПЕКТ ЛЕКЦИЙ

для студентов специальностей

1-49 01 01, 1-49 01 02, 1-91 01 01

ЛИПИДЫИ ИХ ОБМЕН

 

Могилев 2005

УДК

Рассмотрен и утвержден на заседании кафедры

химической технологии высокомолекулярных соединений

Протокол № __ от ___________ 2005 г.

 

Составитель доцент Макасеева О.Н.,

ст. преподаватель Ткаченко Л.М.

Оформление

графического материала Ильичева Н.И.

 

 

Рецензент доцент Гузиков А.Я.

Ó УО «Могилевский государственный университет продовольствия»

Содержание

1 Липиды.. 4

1.1 Общие признаки, функции, классификация. 4

1.2 Жирные кислоты.. 5

1.3 Омыляемые липиды.. 8

1.3.1 Простые липиды.. 8

1.4 Прогоркание жира. 11

1.5 Сложные липиды.. 16

1.5.1 Фосфолипиды.. 16

1.5.2 Гликолипиды.. 19

1.6 Неомыляемые липиды.. 20

1.6.1 Стероиды.. 20

1.6.2 Терпены.. 22

1.7 Биологические мембраны.. 23

2 Метаболизм липидов. 26

2.1 Переваривание и всасывание липидов. 26

2.2 Окисление жира. 29

2.2.1 Окисление глицерина. 29

2.2.2 Окисление жирных кислот. 29

2.3 Синтез триацилглицеролов. 36

2.3.1 Синтез глицерол-3-фосфата. 37

2.3.2 Синтез жирных кислот. 37

2.3.3 Синтез триацилглицеролов. 43

3 Метаболизм фосфолипидов. 44

3.1 Распад (катаболизм) фосфолипидов. 44

3.2 Синтез фосфолипидов. 44

Список используемой литературы.. 47

Липиды

Общие признаки, функции, классификация

Липиды (от греч. lipos – жир) представляют собой группу природных органических соединений, различающихся по своей химической структуре и функциям. Однако они характеризуются следующими общими признаками: нерастворимостью в воде, а растворимостью в органических растворителях (эфире, хлороформе, бензоле), гидрофобностью и содержанием высших жирных кислот. Многие липиды содержат как минимум одну полярную группу, которая может служить местом связывания с другими компонентами.

Липиды извлекают из любого растительного материала в виде сложной смеси и в зависимости от способов и приемов экстрагирования, вида растворителя различают свободные, связанные и прочно связанные липиды.

Свободные липиды извлекают неполярными безводными растворителями (чаще всего используют диэтиловый эфир). При этом в эфирный экстракт переходит не только собственно жир, но и свободные высшие жирные кислоты, высшие спирты, фосфатиды, стеролы, воска, хлорофилл, каротиноиды, жирорастворимые витамины, т. е. в экстракте находится так называемый сырой жир. Для количественного определения сырого жира используют аппарат Сокслета.

Связанные липиды. Часть липидов может быть связана с белками (липопротеины) и углеводами (гликолипиды). При определении «сырого» жира они не экстрагируются диэтиловым эфиром. Их извлекают гидрофильными полярными растворителями или их смесями (хлороформ+метанол, этанол+метанол, насыщенный водой н-бутанол), которые разрушают непрочные белково-липидные и гликолипидные комплексы.

Прочносвязанные липиды получают из обработанного щелочами и кислотами шрота, оставшегося после выделения связанных липидов.

Состав свободных и связанных липидов неодинаков. Основная фракция свободных липидов – триацилглицеролы (60-70%), а связанных – фракции полярных липидов (фосфолипидов) от 30 до 40%.

В организме липиды выполняют пять основных функций:

1) энергетическую – являются резервными соединениями, основной формой запасания энергии и углерода. При окислении 1г нейтральных жиров (триацилглицеролов) выделяется около 38 кДж энергии;

2) защитную – липиды (воски) образуют защитные водоотталкивающие покровы растений, их семян и плодов и термоизоляционные (жир) прослойки у животных организмов;

3) структурную – являются главными структурными компонентами клеточных мембран;

4) липиды служат предшественниками ряда других биологически активных веществ – витамина Д, желчных кислот, каротиноидов, стеролов и т.д.;

5) регуляторную – производными жирных кислот являются стероидные гормоны и простагландины – гормоны местного действия. От свойств и структуры мембранных липидов во многом зависит активность мембраносвязанных ферментов. Липидами являются жирорастворимые витамины и провитамины (каротины, стеролы); обладая высокой биологической активностью, эти вещества оказывают регулирующее влияние на обмен веществ.

Существует несколько классификаций липидов. Наибольшее распространение получила классификация, основанная на структурных особенностях липидов и их способности к гидролизу (рисунок 1).

Рисунок 1 – Классификация липидов

Жирные кислоты

В природе обнаружено свыше 200 жирных кислот, которые входят в состав липидов микроорганизмов, растений и животных.

Жирные кислоты – алифатические карбоновые кислоты (рисунок 2). В организме могут находиться как в свободном состоянии, так и выполнять роль строительных блоков для большинства классов липидов.

Все жирные кислоты, входящие в состав жиров, делят на две группы: насыщенные и ненасыщенные. Ненасыщенные жирные кислоты, имеющие двеи более двойных связей, называют полиненасыщенными. Природные жирные кислоты весьма разнообразны, однако имеют ряд общих черт. Это монокарбоновые кислоты, содержащие линейные углеводородные цепи. Почти все они содержат четное число атомов углерода (от 14 до 22, чаще всего встречаются с 16 или 18 атомами углерода). Гораздо реже встречаются жирные кислоты с более короткими цепями или с нечетным числом атомов углерода. Содержание ненасыщенных жирных кислот в липидах, как правило, выше, чем насыщенных. Двойные связи, как правило, находятся между 9 и 10 атомами углерода, почти всегда разделены метиленовой группой и имеют цис-конфигурацию.

Встречаются и трансизомеры жирных кислот. Они обнаружены в молочных продуктах, мясе и жире крупного рогатого скота, в гидрогенизированных растительных жирах. Трансизомеры оказывают негативное влияние на здоровье человека: повышая в крови уровень опасных для сосудистых стенок липидов низкой плотности, увеличивают риск возникновения сердечно-сосудистых заболеваний. В странах ЕС пока отсутствуют ограничения на уровень содержания трансизомеров (за исключением Дании). Дания является первой страной, которая ввела стандарт на содержание трансизомеров – не более 2 %.

 

Рисунок 2 – Основная структура и номенклатура жирных кислот

Высшие жирные кислоты практически нерастворимы в воде, но их натриевые или калиевые соли, называемые мылами, образуют в воде мицеллы, стабилизируемые за счет гидрофобных взаимодействий. Мыла обладают свойствами поверхностно-активных веществ.

Жирные кислоты отличаются:

– длиной их углеводородного хвоста, степенью их ненасыщенности и положением двойных связей в цепях жирных кислот;

– физико-химическими свойствами. Обычно насыщенные жирные кислоты при температуре 22 0С имеют твердую консистенцию, тогда как ненасыщенные представляют собой масла.

Ненасыщенные жирные кислоты имеют более низкую температуру плавления. Полиненасыщенные жирные кислоты быстро окисляются на открытом воздухе, чем насыщенные. Кислород реагирует с двойными связями с образованием пероксидов и свободных радикалов;

– структурной организацией. В насыщенных жирных кислотах углеводородный хвост, в принципе, может принимать бесчисленное множество конфигураций вследствие полной свободы вращения вокруг одинарной связи; однако наиболее вероятной является вытянутая форма, поскольку она энергетически наиболее выгодна. В ненасыщенных кислотах наблюдается иная картина: невозможность вращения вокруг двойной связи (или связей) обусловливает жесткий изгиб углеводородной цепи. В природных жирных кислотах двойная связь, находясь в цис-конфигурации, дает изгиб цепи под углом приблизительно 300. В жирных кислотах с несколькими двойными связями цис-конфигурация придает углеродной цепи изогнутый и укороченный вид. Этот изгиб препятствует формированию упорядоченной структурной организации между соседними молекулами, характерной для насыщенных жирных кислот, и, следовательно, ван-дерваальсовы взаимодействия между углеводородными хвостами ненасыщенных кислот ослабляются. В результате чего цис-ненасыщенные жирные кислоты имеют более низкую температуру плавления, чем насыщенные. Цис-форма менее стабильна, чем транс-форма. В таблице 1 приведены жирные кислоты, наиболее часто встречающиеся в природных липидах.

Таблица 1 – Основные карбоновые кислоты, входящие в состав липидов

Число С-атомов Число двойных связей Наименование кислоты Структурная формула
Насыщенные
    Лауриновая Миристиновая Пальмитиновая Стеариновая Арахиновая СН3–(СН2)10–СООН СН3–(СН2)12–СООН СН3–(СН2)14–СООН СН3–(СН2)16–СООН СН3–(СН2)18–СООН
Ненасыщенные
    Олеиновая Линолевая Линоленовая Арахидовая СН3–(СН2)7–СН=СН–(СН2)7–СООН СН3–(СН2)4–(СН=СН–СН2)2–(СН2)6–СООН СН3–СН2–(СН=СН–СН2)3–(СН2)6–СООН СН3–(СН2)4–(СН=СН–СН2)–(СН2)2–СООН
         

В высших растениях присутствуют, в основном, пальмитиновая кислота и две ненасыщенные кислоты – олеиновая и линолевая. Доля ненасыщенных жирных кислот в составе растительных жиров очень высока (до 90 %), а из предельных лишь пальмитиновая кислота содержится в них в количестве 10-15 %.

Стеариновая кислота в растениях почти не встречается, а содержится в значительном количестве (25 % и более) в некоторых твердых животных жирах (жир баранов и быков) и маслах тропических растений (кокосовое масло). Лауриновой кислоты много в лавровом листе, миристиновой – в масле мускатного ореха, арахиновой и бегеновой – в арахисовом и соевом маслах. Полиненасыщенные жирные кислоты – линоленовая и линолевая – составляют главную часть льняного, конопляного, подсолнечного, хлопкового и некоторых других растительных масел. Жирные кислоты оливкового масла на 75% представлены олеиновой кислотой.

В организме человека и животных не могут синтезироваться такие важные кислоты, как линолевая, линоленовая. Арахидоновая – синтезируется из линолевой. Поэтому они должны поступать в организм с пищей. Эти три кислоты получили название незаменимых жирных кислот. Комплекс этих кислот называют витамином F. При длительном отсутствии их в пище у животных наблюдается отставание в росте, сухость и шелушение кожи, выпадение шерсти. Описаны случаи недостаточности незаменимых жирных кислот и у человека. Так, у детей грудного возраста, получающих искусственное питание с незначительным содержанием жиров, может развиться чешуйчатый дерматит, т.е. проявляются признаки авитаминоза.

Механизм действия витамина F неизвестен, но установлено, что он участвует в регуляции обмена липидов; способствует выведению из организма холестерина, тем самым предупреждая и ослабляя атеросклероз; также оказывает благотворное влияние на стенки кровеносных сосудов, повышая их эластичность. Арахидоновая кислота является предшественником гормонов – простагландинов, оказывающих влияние на физиологические функции клеток. В частности, ряд простагландинов влияет на деятельность гладких мышц сосудов, в связи с чем их используют для лечения гипертонии, облегчения родов и т. д. Растительные масла не содержат арахидоновой кислоты. Она присутствует в продуктах животного происхождения (яйца, сердце, почки и т. д.) Ежедневно человеку необходимо потреблять в среднем 20-25 г растительного масла и 55-60 г животного.

Масла некоторых растений содержат специфические жирные кислоты. В маслах из семян крестоцветных растений – рапса и горчицы – содержится ненасыщенная эруковая кислота СН3–(СН2)7–СН=СН–(СН2)11–СООН, которая является токсичной. В настоящее время выведены безэруковые сорта рапса.

Масло клещевины содержит рицинолевую кислоту – оксикислоту, имеющую гидроксильную группу у 12-го углеродного атома:

СН3–(СН2)5–СН–СН2–СН=СН–(СН2)7–СООН

|

ОН

В последнее время большое внимание уделяется жирным кислотам Омега-3. Эти кислоты обладают сильным биологическим действием – уменьшают слипание тромбоцитов, тем самым предупреждают инфаркты, снижают артериальное давление, уменьшают воспалительные процессы в суставах (артриты), необходимы для нормального развития плода у беременных. Эти жирные кислоты содержатся в жирных сортах рыб (скумбрия, лосось, семга, норвежская сельдь). Рекомендуется употреблять морскую рыбу 2-3 раза в неделю.

Омыляемые липиды

Простые и сложные липиды легко омыляются. При действии кислот и щелочей на них происходит расщепление сложноэфирной связи – омыление жира. При этом выделяются свободный спирт и свободные жирные кислоты или их соли.

Простые липиды

Простые липиды – соединения, состоящие только из жирных кислот и спиртов. Они делятся на две группы: 1) нейтральные ацилглицеролы и 2) воски.

Триацлглицеролы (жиры)

Нейтральные ацилглицеролы представляют собой сложные эфиры трехатомного спирта глицерина и высших жирных кислот. Простые ацилглицеролы не содержат ионных групп, являются нейтральными липидами, относятся к L-ряду.

Если жирными кислотами этерифицированы все три гидроксильные группы глицерина, то такое соединение называют триацилглицеролом (триглицерид), если две – диацилглицеролом (диглицерид) и, наконец, если этерифицирована одна группа – моноацилглицеролы(моноглицерид).

Триацилглицеролы различаются природой и расположением трех остатков жирных кислот. В зависимости от типа остатков жирных кислот нейтральные жиры делятся на простые и смешанные. Если во всех трех положениях стоят остатки одной и той же жирной кислоты, то их относят к простым триацилглицеролам, название которых определяется названием соответствующей жирной кислоты (например, трипальмитин, тристеарин, триолеин и т.д.), если остатки разных жирных кислот, то их относят к смешанным триацилглицеролам (например, 1-олео-2-пальмито-3-стеарин).

Нейтральные ацилглицеролы служат главными составными частями природных жиров и масел, чаще всего это смешанные триацилглицеролы. По происхождению природные жиры делят на животные и растительные. В зависимости от жирно-кислотного состава жиры и масла по консистенции бывают жидкими и твердыми. Животные жиры (баранье, говяжье, свиное сало, молочный жир) обычно содержат значительное количество насыщенных жирных кислот (пальмитиновой, стеариновой и др.), благодаря чему при комнатной температуре они твердые.

Жиры, в состав которых входит много ненасыщенных кислот (олеиновая, линолевая, линоленовая и др.), при обычной температуре жидкие и называются маслами.

Жиры, как правило, содержатся в животных тканях, масла – в плодах и семенах растений. Особенно высоко содержание масел (20-60 %) в семенах подсолнечника, хлопчатника, сои, льна. Семена этих культур используются в пищевой промышленности для получения пищевых масел.

По способности высыхать на воздухе масла подразделяются: на высыхающие (льняное, конопляное), полувысыхающие (подсолнечное, кукурузное), невысыхающие (оливковое, касторовое). Это свойство масел определяется их жирно - кислотным составом.

Триацилглицеролы способны вступать во все химические реакции, свойственные сложным эфирам. Наибольшее значение имеет реакция омыления, она может происходить как при ферментативном гидролизе, так и при действии кислот и щелочей. Жидкие растительные масла превращают в твердые жиры при помощи гидрогенизации. Этот процесс широко используется для изготовления маргарина и кулинарного жира.

Жиры при сильном и продолжительном взбалтывании с водой образуют эмульсии – дисперсные системы с жидкой дисперсной фазой (жир) и жидкой дисперсионной средой (водой). Однако эти эмульсии нестойки и быстро разделяются на два слоя – жир и воду. Жиры плавают над водой, поскольку их плотность меньше плотности воды (от 0,87 до 0,97).

Для получения стойких эмульсий жира в воде необходимо присутствие третьего вещества – эмульгатора, легко адсорбирующегося на поверхности раздела двух фаз. Молекула эмульгатора состоит из двух частей: из углеводородной цепи (гидрофобный хвост) и какой-либо полярной или ионной группы (гидрофильная головка). К таким соединениям относятся мыла, белки, фосфолипиды, соли желчных кислот. При взбалтывании жира с водой в присутствии эмульгатора происходит дробление жира на капли, на которых появляется тончайшая пленка, состоящая из адсорбированных молекул эмульгатора, гидрофобный конец которых погружен в капельку жира, а гидрофильный – в водную фазу (см. рис. 3).

Рисунок 3 – Схема действия эмульгатора

Таким образом, эмульгатор формирует гидрофильную оболочку вокруг капель жира, образуя мелкодисперсную смесь с водой или эмульсию, которая приобретает свойство стабильности.

Эмульгирование имеет большое физиологическое значение при всасывании и усвоении организмом жиров, а также при образовании биологических мембран. Эмульсии широко используются в пищевой промышленности при приготовлении шоколада, майонеза, маргарина, мыловарении, при изготовлении косметических средств, в производстве красителей.

Воски

Это сложные эфиры высших жирных кислот и высших одноатомных спиртов жирного (реже ароматического) ряда.

Воски являются твердыми соединениями с ярко выраженными гидрофобными свойствами. Природные воски содержат также некоторое количество свободных жирных кислот и высокомолекулярных спиртов. В состав восков входят как обычные, содержащиеся в жирах, – пальмитиновая, стеариновая, олеиновая и др., так и жирные кислоты, характерные для восков, имеющие гораздо большие молекулярные массы, – карноубовая С24Н48О2, церотиновая С27Н54О2, монтановая С29Н58О2 и др.

Среди высокомолекулярных спиртов, входящих в состав восков, можно отметить цетиловый – СН3–(СН2)14–СН2ОН, цериловый – СН3–(СН2)24–СН2ОН, мирициловый СН3–(СН2)28–СН2ОН.

Воски встречаются как в животных, так и в растительных организмах и выполняют, главным образом, защитную функцию.

В растениях они покрывают тонким слоем листья, стебли и плоды, тем самым, предохраняя их от смачивания водой, высыхания, механических повреждений и поражения микроорганизмами. Нарушение этого налета приводит к быстрой порче плодов при их хранении.

Например, значительное количество воска выделяется на поверхности листьев пальмы, произрастающей в Южной Америке. Этот воск, называемый карноубским, является, в основном, церотиново-мирициловым эфиром:

 

,

 

имеет желтый или зеленоватый цвет, очень тверд, плавится при температуре 83-900С, идет на выделку свечей.

Среди животных восков наибольшее значение имеет пчелиный воск, под его покровом хранится мед и развиваются личинки пчелы. В пчелином воске преобладает пальмитиново-мирициловый эфир:

,

а также высокое содержание высших жирных кислот и различных углеводородов, плавится пчелиный воск при температуре 62-700С.

Другими представителями воска животных является ланолин и спермацет. Ланолин предохраняет волосы и кожу от высыхания, очень много его содержится в овечьей шерсти.

Спермацет – воск, добывающий из спермацетового масла черепных полостей кашалота, состоит, в основном, (на 90%) из пальмитиново-цетилового эфира:

твердое вещество, его температура плавления 41-490С.

Различные воска широко применяют для изготовления свечей, помад, мыла, разных пластырей.

Прогоркание жира

При хранении растительные масла, животные жиры, а также жиросодержащие продукты (мука, крупа, кондитерские изделия, мясные продукты) под влиянием кислорода воздуха, света, ферментов, влаги приобретают неприятный вкус и запах. Иными словами, жир прогоркает.

Прогоркание жиров и жиросодержащих продуктов ­– результат сложных химических и биохимических процессов, протекающих в липидном комплексе.

В зависимости от характера основного процесса, протекающего при этом, различают гидролитическое и окислительное прогоркание. Каждый из них может быть разделен на автокаталитическое (неферментативное) и ферментативное (биохимическое) прогоркание.

При гидролитическом прогоркании происходит гидролиз жира с образованием глицерина и свободных жирных кислот.

Неферментативный гидролиз протекает с участием растворенной в жире воды, и скорость гидролиза жира при обычных температурах невелика. Ферментативный гидролиз происходит при участии фермента липазы на поверхности соприкосновения жира и воды и возрастает при эмульгировании.

В результате гидролитического прогоркания увеличивается кислотность, появляется неприятный вкус и запах. Особенно это сильно выражено при гидролизе жиров (молочного, кокосового и пальмового), содержащих низко- и среднемолекулярные кислоты, такие как масляную, валериановую, капроновую. Высокомолекулярные кислоты не имеют вкуса и запаха, а повышение их содержания не приводит к изменению вкуса масел.

Фермент триацилглицероллипаза широко распространен в природе и играет важную роль в пищеварении, а также процессах, протекающих при хранении, переработке растительного сырья и пищевых продуктов.

Выделены липазы растительного (клещевины, пшеницы), животного (панкреатическая, молока), микробного происхождения. Они различаются по специфичности действия, растворимости, оптимума рН и t0 С.

Липаза – однокомпонентный фермент, содержащий в активном центре (–SH) тиоловую группу и ионы Са+2.

Под действием липазы вначале гидролизуются связи в положении 1, 3, а затем 2: триглицирид→1,2-диглицирид→2-моноглицирид→глицерин.

Липаза быстрее отщепляет остатки высокомолекулярных жирных кислот, чем низкомолекулярных.

Наиболее распространенным видом порчи жиров в процессе хранения является окислительное прогоркание. В первую очередь окислению подвергаются свободные, а не связанные в триацилглицеролах ненасыщенные жирные кислоты. Процесс окисления может происходить неферментативным и ферментативным путями.

В результате неферментативного окисления кислород присоединяется к ненасыщенным жирным кислотам по месту двойной связи с образованием циклической перекиси, которая распадается с образованием альдегидов, придающих жиру неприятный запах и вкус:

 

Также в основе неферментативного окислительного прогоркания лежат цепные радикальные процессы, в которых участвуют кислород и ненасыщенные жирные кислоты.

Под действием перекисей и гидроперекисей (первичных продуктов окисления) происходит дальнейший распад жирных кислот и образование вторичных продуктов окисления (карбонилсодержащих): альдегидов, кетонов и других неприятных на вкус и запах веществ, вследствие чего жир прогоркает. Чем больше двойных связей в жирной кислоте, тем выше скорость ее окисления.

Прогоркание жиров сопровождается окислением не только ацилглицеролов, но и сопутствующих веществ: каротиноидов, витамина Е и других веществ. Порча жира сопровождается целым рядом реакций деструкции и полимеризации (образованием токсичных эпоксисоединений). Например, деструкция фосфатидилхолина приводит к образованию триметиламина (СН3)3N, придающего селедочный запах жиру. Таким образом, снижается пищевая ценность жира и ухудшаются его органолептические свойства.

При ферментативном окислении этот процесс катализируется ферментом липоксигеназой с образованием гидроперекисей. Действие липоксигеназы сопряжено с действием липазы, которая предварительно гидролизует жир.

Специфичность липоксигеназы состоит в том, что действию фермента подвергаются лишь те полиненасыщенные жирные кислоты, которые содержат цис-цис-1,4-пентадиеновую группировку (линолевая, линоленовая, арахидоновая). Процесс начинается с отщепления атома водорода у 3-го атома углерода пентадиеновой группировка жирной кислоты. Образовавшийся свободный радикал перемещается к 5-му атому углерода с одновременным перемещением двойной связи в сопряженное положение (1,2-бутадиеновая группировка), которая при этом из цис-цис формы переходит в цис-транс изомер, в результате данного процесса идет образование гидроперекиси (первичного продукта окисления):

Гидроперекиси, далее как и в случае неферментативного окисления, образуют вторичные продукты окисления. Жирные кислоты с цис-транс или транс-транс-конфигурацией двойных связей ферментом не окисляются.

Липоксигеназа широко распространена в растительном мире. Она найдена в пшенице и других злаках, в семенах масличных и бобовых растений, особенно велико ее содержание в соевой муке. В результате действия этого фермента происходит прогоркание муки, крупы, макарон и других продуктов. Образующиеся гидроперекиси жирных кислот могут далее окислять жирные кислоты, каротины, витамин А, аминокислоты и аскорбиновую кислоту. Таким образом, снижается пищевая ценность продукта и изменяется цвет.

Активность липоксигеназы необходимо учитывать в некоторых технологиях, т.к. она может влиять на потребительские свойства готового продукта. При производстве макарон требуется специальная макаронная мука, вырабатываемая из твердых сортов пшеницы, с низкой активностью липоксигеназы. При высокой активности липоксигеназы, получаются бледные макароны, из-за окисления ею пигментов муки каротиноидов. Потребительские свойства (цвет) таких макарон не высоки.

Поэтому при хранении жиров и жиросодержащего сырья используют природные антиокислители (антиоксиданты). К ним относятся: токоферол – витамин Е, витамин С, лецитин, каротиноиды. Эти вещества способны взаимодействовать с образующимися свободными радикалами и прекращать дальнейший процесс окисления, обрывая цепь превращений радикалов.

Липоксигеназа может выполнять и положительную роль. При слабом ее действии небольшие количества гидроперекисей жирных кислот (окисляя группы –SH в белках и образуя дисульфидные группы –S–S–) «укрепляют» клейковину, ускоряют процесс «созревания» пшеничной муки, улучшает ее хлебопекарные достоинства.

Разработана технология выработки хлеба из слабой пшеничной муки с использованием липоксигеназы. К пшеничной муке добавляют соевую или гороховую муку (источник липоксигеназы) и растительное масло (источник ненасыщенных жирных кислот). В результате разностороннего действия фермента (укрепления клейковины и обесцвечивания пигментов муки) улучшается цвет мякиша (он становится светлее) и увеличивается объем хлеба.

Под действием ферментов липазы и липоксигеназы изменяется качество жиров и масел, которое характеризуется следующими показателями или числами:

Кислотное число (К.ч.) – это количество миллиграммов гидроксида калия, необходимого для нейтрализации свободных жирных кислот в 1 г жира.

При хранении масла наблюдается гидролиз триацилглицеролов, это приводит к накоплению свободных жирных кислот, т.е. к возрастанию кислотности. Повышение К.ч. указывает на снижение его качества. Кислотное число является гостированным показателем масла и жира.

Йодное число (Й.ч.) – это количество граммов йода, присоединившегося по месту двойных связей к 100 г жира:

 

Йодное число позволяет судить о степени ненасыщенности масла (жира), о склонности его к высыханию, прогорканию и другим изменениям, происходящим при хранении. Чем больше содержится в жире ненасыщенных жирных кислот, тем выше йодное число. Уменьшение йодного числа в процессе хранения масла является показателем его порчи.

Перекисное число (П.ч.) показывает количество перекисей в жире, выражают его в процентах йода, выделенного из йодистого калия перекисями, образовавшимися в 1 г жира.

В свежем жире перекиси отсутствуют, но при доступе воздуха они появляются сравнительно быстро. В процессе хранения перекисное число увеличивается.

Число омыления (Ч.о.) – это количество миллиграммов гидроксида калия, необходимое для нейтрализации свободных и омыления связанных с глицерином жирных кислот в 1 г жира.

Сложные липиды

Фосфолипиды

Фосфолипиды являются структурными компонентами клеточных мембран и в небольшом количестве обнаружены в составе запасных отложений. Они легко образуют комплексы с белками и в виде фосфолипопротеинов присутствуют во всех клетках живых существ.

Фосфолипиды найдены в животных и растительных организмах. Особенно много их содержится в нервной ткани, сердце, печени животных. Много фосфолипидов в семенах растений, особенно в семенах масличных и бобовых культур.

Фосфолипиды – твердые вещества жироподобного вида; они бесцветны, но быстро темнеют на воздухе, вследствие окисления ненасыщенных жирных кислот. Они хорошо растворимы в большинстве неполярных органических растворителей (бензол, хлороформ, петролейный эфир) и масле. В воде они не растворимы, но могут образовывать эмульсии или коллоидные растворы.

Фосфолипиды – сложные эфиры многоатомных спиртов с высшими жирными кислотами, содержащие в качестве добавочных групп остатки фосфорной кислоты и азотистых оснований.

Из многоатомных спиртов в составе различных фосфолипидов найдены глицерин, миоинозит и сфингозин.

В соответствии с этим, фосфолипиды делят на три группы: глицерофосфолипиды, ионозитфосфолипиды и сфингофосфолипиды. Из высших жирных кислот в молекулах фосфолипидов чаще содержатся пальмитиновая, стеариновая, линолевая, линоленовая и арахидоновая кислоты.

Наиболее распространенными в природе являются глицерофосфолипиды и сфингофосфолипиды.

Глицерофосфолипиды

Глицерофосфолипиды являются производными фосфатидной кислоты. В их состав входят глицерин, жирные кислоты, фосфорная кислота и обычно азотсодержащее соединение. Общая формула глицерофосфолипидов выглядит так:

В этих формулах R1 и R2 – радикалы высших жирных кислот (как правило, R2–это ненасыщенная жирная кислота), а В – радикал азотистого основания.

В зависимости от характера азотистого основания среди фосфатидов различают фосфатидилхолины (лецитины), если фосфорная кислота соединена эфирной связью с азотистым основанием – холином [НО–СН2–СН2–N+(CН3)3]; фосфатидилэтаноламины (кефалины), если азотистым основанием служит этанол-амин (HO–CH2–CH2–H3N+); фосфатидилсерины, если азотистым основанием является аминокислота серин (HO–CH2–CH–H3N+):

|

СОО-

Три первых вида азотосодержащих фосфатидов могут переходить друг в друга, т. к. они отличаются лишь строением азотистых оснований, между которыми возможна, например, такая генетическая связь:

В состав некоторых глицерофосфолипидов вместо азотосодержащих соединений входит не содержащий азота шестиуглеродный циклический спирт инозит, названный также инозитолом. Эти липиды называются инозитфосфолипиды или фосфатидилинозитолами:

Фосфатидилинозитолы обнаружены у животных, растений и микроорганизмах. В животном организме найдены в мозге, печени и легких.

Сфингофосфолипиды

Особую группу составляют фосфолипиды, у которых вместо глицерина содержится аминоспирт сфингозин, такие фосфолипиды называются сфингофосфолипидами. К наиболее распространенным сфинголипидам относят сфингомиелин.

В основном они находятся в мембранах животных и растительных клеток. Особенно богата ими нервная ткань, а также сфингомиелины обнаружены в составе оболочек шариков молочного жира, крови, в ткани почек, печени.

Молекулы фосфолипидов, особенно глицерофосфолипидов и сфингофосфолипидов, обладают выраженной полярностью. В структуре фосфолипидов можно выделить два фрагмента: полярную головку, образованную фосфорной кислотой и азотосодержащим соединением (холин, этаноламин, серин) и гидрофобные «хвосты», образованные остатками высших жирных кислот.

 

Рисунок 4 – Структурное изображение фосфолипида:

а – фосфатидилхолин (лецитин);

б – схематическое изображение молекулы фосфолипида

 

Благодаря такому строению фосфолипиды обладают следующими свойствами:

– в растворах образуют слоистые структуры, которые играют очень важную роль в построении клеточных мембран. Фосфолипиды, образуя структурный матрикс мембран в виде двойных липидных слоев, являются основой любой биологической мембраны;

– образуя комплексы с белками клеточных мембран, регулируют процессы транспорта ионов и других органических веществ через мембрану, обеспечивая нормальный ход обменных процессов в клетке;

– являются природными антиоксидантами и предохраняют масла от окисления, легко окисляясь сами;

– хорошие поверхностно-активные вещества (ПАВ), способные оказывать влияние на структурно-механические свойства клейковины, улучшая хлебопекарные достоинства пшеничной муки;

– прекрасные эмульгаторы (особенно лецитин) и широко используются в пищевой промышленности при изготовлении шоколада, маргарина, майонеза.

Гликолипиды

Гликолипиды в отличии от фосфолипидов не содержат фосфорной кислоты, а вместо азотистого основания в их состав входят углеводы, чаще всего галактоза или ее производные. Из спиртов гликолипиды содержат глицерол или сфингозин, а также остатки жирных кислот.

Среди гликолипидов особенно широко распространены галактозилацилглицеролы.

Эти соединения содержатся в самых различных растительных тканях. Они обнаружены в митохондриях, хлоропластах и локализованы в мембранах; содержатся в водорослях, некоторых фотосинтезирующих бактериях. Гликолипиды способны образовывать с белками клейковины комплексы и тем самым влиять на хлебопекарные свойства муки.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-04-29 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: