Общая характеристика математических методов в научных исследваниях




Решение практических задач математическими методами последовательно осуществляется путем математической формулировки задачи (разработки математической модели), выбора метода проведения исследования полученной математической модели, анализа, полученных результатов.

Математическая формулировка задачи обычно представляется в виде чисел, геометрических образов, функций, систем уравнений и т.д.

Математическая модель представляет собой систему математических соотношений - формул, функций, уравнений, систем уравнений, описывающих те или иные стороны изучаемого объекта, явления, процесса.

На этапе выбора типа математической модели при помощи анализа данных поискового эксперимента устанавливаются: линейность или нелинейность, динамичность или статичность, стационарность или нестационарность, а также степень детерминированности исследуемого объекта или процесса.

Установление общих характеристик объекта позволяет выбрать математический аппарат, на базе которого строится математическая модель. Выбор математического аппарата может быть осуществлен в соответствии со схемой, представленной на рис.1.2.

Рис.1.2. Математический аппарат для построения математической модели

Как видно из данной схемы, выбор математического аппарата не является однозначным и жестким.

Для описания сложных объектов с большим количеством параметров возможно разбиение объекта на элементы (подсистемы), установление иерархии элементов и описание связей между ними на различных уровнях иерархии.

Особое место на этапе выбора вида математической модели занимает описание преобразования входных сигналов в выходные характеристики объекта.

Если на предыдущем этапе было установлено, чтообъект является статическим, то построение функциональной модели осуществляется при помощи алгебраических уравнений. При этом кроме простейших алгебраических зависимостей используются регрессионные модели и системы алгебраических уравнений.

Если заранее известен характер изменения исследуемого показателя, то число возможных структур алгебраических моделей резко сокращается и предпочтение отдается той структуре, которая выражает наиболее общую закономерность или общеизвестный закон.

Если характер изменения исследуемого показателя заранее неизвестен, то ставится поисковый эксперимент. Предпочтение отдается той математической формуле, которая дает наилучшее совпадение с данными поискового эксперимента.

Результаты поискового эксперимента и априорный информационный массив позволяют установить схему взаимодействия объекта с внешней средой по соотношению входных и выходных величин.

В принципе возможно установление четырех схем взаимодействия:

одномерно-одномерная схема (рис.1.3,а) - на объект воздействует только один фактор, а его поведение рассматривается по одному показателю (один выходной сигнал);

одномерно-многомерная схема (рис.1.3 б) - на объект воздействует один фактор,а его поведение оценивается по нескольким показателям;

многомерно-одномерная схема (рис.1.3,в) - на объект воздействует несколько факторов, а его поведение оценивается по одному показателю;

многомерно-многомерная схема (рис.1.3,г) - на объект воздействует множество факторов и его поведение оценивается по множеству показателей.

Рис.1.3. Схемы взаимодействия объекта с внешней средой

Процесс выбора математической модели объекта заканчивается ее предварительным контролем.

При этом осуществляются следующие виды контроля: размерностей; порядков; характера зависимостей; экстремальных ситуаций; граничных условий; математической замкнутости; физического смысла; устойчивости модели.

Контроль размерностей сводится к проверке выполнения правила, согласно которому приравниваться и складываться могут только величины одинаковой размерности.

Контроль порядков направлен на упрощение модели. При этом определяются порядки складываемых величин и явно малозначительные слагаемые отбрасываются.

Контроль характера зависимостей сводится к проверке направления и скорости изменения одних величин при изменении других. Направления и скорость, вытекающие из математической модели, должны соответствовать физическому смыслу задачи.

Контроль экстремальных ситуаций сводится к проверке наглядного смысла решения при приближении параметров модели к нулю или бесконечности.

Контроль граничных условий состоит в том, что проверяется соответствие математической модели граничным условиям, вытекающим из смысла задачи. При этом проверяется, действительно ли граничные условия поставлены и учтены при построении искомой функции и что эта функция на самом деле удовлетворяет таким условиям.

Контроль математической замкнутости сводится к проверке того, что математическая модель дает однозначное решение.

Контроль физического смысла сводится к проверке физического содержания промежуточных соотношении, используемых при построении математической модели.

Контроль устойчивости модели состоит в проверке того, что варьирование исходных данных в рамках имеющихся данных о реальном объекте не приведет к существенному изменению решения.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-02-10 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: