Общая характеристика, краткие сведения об истории открытия элементов и их распространенности в природе




ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ОРЕНБУРГСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ»

ФЕДЕРАЛЬНОГО АГЕНСТВА ПО ЗДРАВООХРАНЕНИЮ И СОЦИАЛЬНОМУ РАЗВИТИЮ РОССИЙСКОЙ ФЕДЕРАЦИИ

Кафедра химии и фармацевтической химии

 

Реферат

на тему:

Химия и биологическая роль элементов IIIA-группы.

 

 

Выполнил:

студентка

педиатрического факультета

11-ой группы

Иванова А.А.

Проверил:

а. к. Карманова Д.С.

 

Оренбург

Содержание

1. Общая характеристика, краткие сведения об истории открытия элементов

и их распространенности в природе 3

2. Борная кислота, её производные 9

3. Свойства галогенидов алюминия и гидрида алюминия 11

4. Свойства соединений галлия, индия и таллия в степенях окисления +1,+314

5. Медико-биологическое значение элементов IIIA группы 20

6. Токсичность таллия 24

Список использованной литературы 28

 

 

Общая характеристика, краткие сведения об истории открытия элементов и их распространенности в природе

Атомы элементов IIIA группы содержат во внешнем слое максимально по три электрона. Поэтому тенденция к дальнейшему присоединению электронов (с дополнением внешнего слоя до октета) не может быть для них характерна. Напротив, металлические свойства бора и его аналогов должны быть выражены сильнee, чем у соответствующих элементов четвертой группы.

По аналогии с подгруппой титана можно ожидать, что элементы подгруппы скандия будут иметь тенденцию, к отдаче не только двух электронов внешнего слоя, но и лишнего против октета электрона следующего, т. е. будут функционировать преимущественно как трехвалентные металлы. С другой стороны, по аналогии с подгруппой германия можно ожидать, что Ga, In и Тl будут способны проявлять в соединениях и более низкую валентность. К своему ближайшему аналогу – алюминию – бор стоит приблизительно в таком же отношении, как углерод к кремнию. Сходство между обоими элементами ограничивается преимущественно их одинаковой валентностью и непосредственно обусловленными ею свойствами. Во многих отношениях бор существенно отличается от алюминия и в целом его химия похожа скорее на химию кремния.

Бор, Borum, В (5)

Природные соединения бора (англ. Boron, франц. Воге, нем. Bor), главным образом нечистая бура, известны с раннего средневековья. Под названиями тинкал, тинкар или аттинкар (Tinkal, Tinkar, Attinkar) бура ввозилась в Европу из Тибета; она употреблялась для пайки металлов, особенно золота и серебра. В Европе тинкал назывался чаще боракс (Воrax) от арабского слова bauraq и персидского - burah. Иногда боракс, или борако, обозначал различные вещества, например соду (нитрон). Руланд (1612) называет боракс хризоколлой - смолой, способной "склеивать" золото и серебро. Лемери (1698) тоже называет боракс "клеем золота" (Auricolla, Chrisocolla, Gluten auri). Иногда боракс обозначал нечто вроде "узды золота" (capistrum auri). В Александрийской эллинистической и византийской химической литературе борахи и борахон, а также в арабской (bauraq) обозначали вообще щелочь, например bauraq arman (армянский борак), или соду, позже так стали называть буру. В 1702 г. Гомберг, прокаливая буру с железным купоросом, получил "соль" (борную кислоту), которую стали называть "успокоительной солью Гомберга" (Sal sedativum Hombergii); эта соль нашла широкое применение в медицине. В 1747 г. Барон синтезировал буру из "успокоительной соли" и натрона (соды). Однако состав буры и "соли" оставался неизвестным до начала XIX в. В "Химической номенклатуре" 1787 г. фигурирует название horacique асid (борная кислота). Лавуазье в "Таблице простых тел" приводит (radical boracique). В 1808 г. Гей-Люссаку и Тенару удалось выделить свободный бор из борного ангидрида, нагревая последний с металлическим калием в медной трубке; они предложили назвать элемент бора (Вога) или бор (Воге). Дэви, повторивший опыты Гей-Люссака и Тенара, тоже получил свободный бор и назвал его бораций (Boracium). В дальнейшем у англичан это название было сокращено до Boron. В начале XIX в. Русские химики называли бор буротвором (Захаров, 1810), буроном (Страхов,1825), основанием буровой кислоты, бурацином (Севергин, 1815), борием (Двагубский, 1824). Кроме того, встречаются названия бурит, борон, буронит основание. В природе бор встречается главным образом в виде кислородных соединений. Бор входит в состав борной кислоты, которая содержится в воде горячих источников вулканических местностей. В природе также распространены многочисленные разновидности солей борной кислоты. Из них наиболее известна бура, или тинкал Na2B4O7 • 10 H2O, бор также входит в состав природного минерала борацита 2 Mg3B8O15 • MgCl2, пандермита Ca2B6O11• 3 H2O, кернита Na2B4O7 • 4 H2O.

Алюминий, Aluminium, Al(13)

Вяжущие вещества, содержащие алюминий, известны с глубокой древности. Однако под квасцами (лат. Alumen или Alumin, нем. Alaun), о которых говорится, в частности, у Плиния, в древности и в средние века понимали различные вещества. В "Алхимическом словаре" Руланда слово Alumen с добавлением различных определений приводится в 34 значениях. В частности, оно означало антимоний, Alumen alafuri - алкалическую соль, Alumen Alcori - нитрум или алкалические квасцы, Alumen creptum - тартар (винный камень) хорошего вина, Alumen fascioli - щелочь, Alumen odig - нашатырь, Alumen scoriole - гипс и т. д. Лемери, автор известного "Словаря простых аптекарских товаров" (1716), также приводит большой перечень разновидностей квасцов.

До XVIII в. соединения алюминия (квасцы и окись) не умели отличать от других, похожих по внешнему виду соединений. Лемери следующим образом описывает квасцы: В 1754 r. Маргграф выделил из раствора квасцов (действием щелочи) осадок окиси алюминия, названной им "квасцовой землей" (Alaunerde), и установил ее отличие от других земель. Вскоре квасцовая земля получила название алюмина (Alumina или Alumine). В 1782 г. Лавуазье высказал мысль, что алюмина представляет собой окисел неизвестного элемента. В "Таблице простых тел" Лавуазье поместил алюмину (Alumine) среди "простых тел, солеобразующих, землистых". Здесь же приведены синонимы названия алюмина: аргила (Argile), квасцовая. земля, основание квасцов. Слово аргила, или аргилла, как указывает Лемери в своем словаре, происходит от греч. горшечная глина. Дальтон в своей "Новой системе химической философии" приводит специальный знак для алюмины и дает сложную структурную формулу квасцов. После открытия с помощью гальванического электричества щелочных металлов Дэви и Берцелиус безуспешно пытались выделить тем же путем металлический алюминий из глинозема. Лишь в 1825 г. задача была решена датским физиком Эрстедом химическим способом. Он пропускал хлор через раскаленную смесь глинозема с углем, и полученный безводный хлористый алюминий нагревал с амальгамой калия. После испарения ртути, пишет Эрстед, получался металл, похожий по внешнему виду на олово. Наконец, в 1827 г. Велер выделил металлический алюминий более эффективным способом – нагреванием безводного хлористого алюминия с металлическим калием. Около 1807 г. Дэви, пытавшийся осуществить электролиз глинозема, дал название предполагаемому в нем металлу алюмиум (Alumium) или алюминум (Aluminum). Последнее название с тех пор ужилось в США, в то время как в Англии и других странах принято предложенное впоследствии тем же Дэви название алюминиум (Aluminium). Вполне ясно, что все эти названия произошли от латинского слова квасцы (Alumen), насчет происхождения которого существуют разные мнения, базирующиеся на свидетельствах различных авторов, начиная с древности. Так, А. М. Васильев, отмечая неясное происхождение этого слова, приводит мнение некоего Исидора:"Alumen называют alumen, так как он придает краскам lumen (свет, яркость), будучи добавлен при крашении". Однако это, хотя и очень давнее, объяснение не доказывает, что слово alumen имеет именно такие истоки. Здесь вполне вероятна лишь случайная тавтология. Лемери (1716) в свою очередь указывает, что слово alumen связано с греческим (халми), означающим соленость, соляной раствор, рассол и пр. Русские названия алюминия в первые десятилетия XIX в. довольно разнообразны. Менделеев в первом издании "Основ химии" (1871) пользуется названиями алюминий и глиний. В дальнейших изданиях слово глиний уже не встречается.

Галлий, Gallium, Ga (31)

В классической статье "Естественная система элементов и применение ея к указанию свойств неоткрытых еще элементов" (1871) Менделеев предсказал существование нескольких элементов и среди них эка-алюминия (Eka-Aluminium). Исходя из периодического закона Менделеев описал основные свойства эка-алюминия и предсказал, что он будет открыт методом спектрального анализа. Все это полностью оправдалось. В 1875 г. Лекок де Буабодран, исследуя цинковую обманку с горы Пьерфитт (Пиренеи), спектроскопически обнаружил в ней новый элемент, выделил соли этого элемента и определил некоторые его свойства. Он назвал новый элемент галлием (Gallium) в честь своего отечества - Франции (лат. Gallia); в этом названии содержался также намек на слово петух (лат. gallus, франц. le coq), т. е. на имя самого Лекока де Буабодрана. Открытие галлия явилось величайшим триумфом периодического закона Менделеева.

Индий, Indium, In (49)

В 1863 г. директор Металлургической лаборатории Фрейбергской горной академии в Саксонии Рейх и его ассистент и преподаватель химии Рихтер занимались спектроскопическим анализом полиметаллических руд и "земель" из района Фрейберга. Они пытались обнаружить в этих пробах элемент таллий, незадолго до этого (1861) открытый учеными Англии и Франции. В спектре одного из образцов цинковой обманки они неожиданно увидели две яркие синие линии, не принадлежащие ни одному из известных элементов. Вскоре им удалось выделить из минерала незначительное количество (не более 0,1%) нового элемента, который был назван индием от названия древнеиндийской синей краски - индиго. Первые определения атомного веса индия (76) были неправильными, так же как и заключение, что индий двухвалентен. В 1869 - 1871 гг. Менделеев путем исследования удельной теплоемкости индия и его химических свойств пришел к выводу, что он должен иметь атомный вес около 114 (совр. 114, 82) и по его способности образовывать квасцы должен быть отнесен к элементам подгруппы алюминия. Позднее Мозели с помощью рентгеновского анализа полностью подтвердил выводы Менделеева.

Таллий, Thallium, Tl (81)

После того как с помощью спектроскопа были открыты рубидий и цезий, этот метод нашел широкое применение в химических исследованиях. Им пользовался и английский ученый Kрукс, открывший в 1863 г. таллий. В отходах после операций по извлечению селена Крукс подозревал наличие теллура, но работа по каким-то причинам была отложена, и отходы долгое время сохранялись в лаборатории. Когда в 1861 г. в распоряжении Крукса оказался спектроскоп, он решил воспользоваться им, чтобы сразу же установить, содержится ли в отходах теллур. Внеся пробу в пламя горелки и ожидая увидеть линии теллура, Крукс с изумлением увидел ярко-зеленую линию, никогда им не наблюдавшуюся приьспектроскопических исследованиях. Линия эта, однако, быстро исчезала (из-за летучести соединения), она появлялась вновь с каждой свежей пробой. Многократно повторив опыт и систематически обследовав спектры элементов, содержащихся в отходах (сурьмы, мышьяка, осмия, селена и теллура), Крукс убедился, что он имеет дело с неизвестным еще элементом. Так как Крукс не располагал большим запасом отходов, ему удалось выделить лишь очень малое количество элемента, которому он дал название таллий от греч. молодая зеленая ветвь. Почти одновременно с Круксом новый элемент открыл французский химик Лами. Характерно, что открытие было сделано тем же путем (спектроскопически) и на том же материале (камерный шламм сернокислотного производства в Лоосе). Лами получил 14 г металлического таллия и подробно описал его свойства, но его сообщение опоздало на несколько месяцев и приоритет открытия остался за Круксом.

Раньше сульфат таллия(I) широко использовали для уничтожения грызунов и муравьев. Обладая высокой токсичностью, он не имеет запаха и вкуса. Однако это вещество во многих странах сейчас запрещено как слишком опасное для общего использования.

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-26 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: