1. Точечная контактная сварка. Электролиз глинозема




1. Точечная контактная сварка

Точечная сварка - разновидность контактной сварки, при которой заготовки соединяются в отдельных точках. При точечной сварке заготовки собирают вна­хлестку и сжимают силой Р между двумя электродами, подводящими ток к месту сварки (рис. 5.30). Соприкасающиеся с медными электродами поверхности сва­риваемых заготовок нагреваются медлен­нее их внутренних слоев. Нагрев продол­жают до пластичного состояния внешних и до расплавления внутренних слоев. По­сле этого выключают ток и несколько увеличивают, а затем снимают давление. В результате образуется литая сварная точка.

Точечная сварка в зависимости от расположения электродов по отношению к свариваемым заготовкам может быть дву- и односторонней. При двусторонней сварке (рис. 5.30, а) две (или больше) за­готовки / сжимают между электродами 2 точечной машины. При односторонней сварке (рис. 5.30, б) ток распределяется между верхним и нижним листами 3 и 4, причем нагрев осуществляется частью тока, протекающего через нижний лист.

2. б)
3. 273


  Рис. 5.31. Циклограмма контактной точеч­ной сварки

 

подкладка 5. Односторонней сваркой можно соединять заготовки одновременно двумя точками. Параметры режима то­чечной сварки: сила сжатия (Н), плот­ность тока j (А/мм), время протекания тока t (с).

На рис. 5.31 показана одна из приме­няемых циклограмм точечной сварки. Весь цикл сварки состоит из четырех ста­дий: сжатия свариваемых заготовок меж­ду электродами; включения тока и разо­грева места контакта до температуры плавления, сопровождающегося образо­ванием литого ядра точки; выключения тока и увеличения сжатия (проковка) для улучшения структуры сварной точки, сня­тия сжатия. Перед сваркой место соеди­нения очищают от оксидных пленок (на­ждачным кругом или травлением).

Типы сварных соединений, выпол­няемых точечной сваркой, показаны на рис. 5.32. Точечной сваркой изготовляют штампосварные конструкции при соеди­нении отдельных штампованных элемен­тов сварными точками. В этом случае упрощается технология изготовлений сварных узлов и повышается производи­тельность. Точечную сварку применяют для изготовления изделий из низкоугле­родистых, углеродистых, низко- и высо-

Рис. 5.32. Типы сварных соединений, вы полняемых точечной сваркой колегированных сталей, алюминиевых сплавов. Толщина свариваемых металлов составляет 0,5... 5 мм.

Многоточечная контактная сварка - разновидность контактной сварки, когда за один цикл сваривается несколько то­чек. Многоточечную сварку выполняют по принципу односторонней точечной сварки. Машины для многоточечной сварки могут иметь от одной до 100 пар электродов; соответственно, можно сва­ривать 2...200 точек за одну установку из­делия. Многоточечной сваркой сваривают одновременно и последовательно.

В первом случае все электроды сразу прижимают к изделию, что обеспечивает меньшее коробление и ббльшую точность сборки. Ток распределяется между при­жатыми электродами специальным токо- распределителем, включающим электро­ды попарно.

Во втором случае пары электродов опускают поочередно или одновременно, а ток подключают поочередно к каждой паре электродов от сварочного трансфор­матора. В массовом производстве, напри­мер в автомобильной промышленности, применяют, как правило, машины, рабо­тающие по заданной программе. Произ­водительность их очень высока - до 1000 и более точек в минуту.

Электролиз глинозема

Основным способом производства алюминия в настоящее время является электролитический. Электролиз - это со­вокупность процессов электрохимическо­го окисления-восстановления, происхо­дящих на погруженных в электролит электродах при прохождении электриче­ского тока.

Производство алюминия включает в себя получение безводного, свободного от примесей оксида алюминия (глинозема); получение криолита из плавикового шпа­та; электролиз глинозема в расплавленном криолите.

Основное сырье для производства алюминия - алюминиевые руды: бокситы, не-фелины, алуниты, каолины. Наиболь­шее значение имеют бокситы. Алюминий в них содержится в виде минералов - гид- роксидов А1(ОН)з, АЮ(ОН), корунда А12и каолинита AI203 | 2Si02 * ЙЩ Алюминий получают электролизом гли­нозема - оксида алюминия (А120з) - в рас­плавленном криолите (Na3AlF6) с добав­лением фтористых алюминия и натрия ■В NaF).

Билет 11

1. Доменный процесс

Чугун выплавляют в печах шахтного типа - доменных. Сущность процесса по­лучения чугуна в доменных печах заклю­чается в восстановлении оксидов железа, входящих в состав руды, оксидом углеро­да, водородом, выделяющимся при сгора­нии топлива в печи и твердым углеродом.

Устройство доменной печи и ее ра­бота. Доменная печь (рис. 2.1) имеет стальной кожух, выложенный внутри ог­неупорным шамотным кирпичом. Рабочее пространство печи включает в себя ко­лошник б, шахту 5, распар 4, заплечики 3, горн /, лещадь 15. В верхней части ко­лошника находится засыпной аппарат 8, через который в печь загружают шихту (офлюсованный агломерат и окатыши). Шихту взвешивают, подают в вагонетки 9 подъемника, которые передвигаются по мосту 12 к засыпному аппарату 8 и, опро­кидываясь, высыпают шихту в приемную воронку 7 распределителя шихты. При опускании малого конуса 10 засыпного аппарата шихта попадает в чашу /7, а при опускании большого конуса 13 - в домен­ную печь, что предотвращает выход газов из доменной печи в атмосферу. Для рав­номерного распределения шихты в до­менной печи малый конус и приемная воронка после очередной загрузки пово­рачиваются на угол, кратный 60°.

При работе печи шихтовые материа­лы, проплавляясь, опускаются, а через загрузочное устройство в печь подаются новые порции шихты в таком количестве, чтобы весь полезный объем печи был за­полнен. Полезный объем печи - это объ­ем, занимаемый шихтой от лещади до нижней кромки большого конуса засып­ного аппарата при его опускании. Совре­менные доменные печи имеют полезный объем 2000... 5000 м3. Полезная высота Я доменной печи достигает 35 м.

В верхней части горна находятся фурменные устройства 14, через которые в печь поступает нагретый воздух, необ­ходимый для горения топлива. Воздух нагревают для повышения температуры в печи и снижения расхода кокса. Воздух поступает в доменную печь из воздухо­нагревателя, внутри которого имеются камера сгорания и насадка. Насадка вы­ложена из огнеупорных кирпичей, так что между ними образуются вертикальные каналы. В камеру сгорания к горелке по­дается очищенный от пыли доменный газ, который сгорает и образует горячие газы.

Газы, проходя через насадку, нагре­вают ее и удаляются через дымовую трубу. Затем подача газа к горелке прекращается и через насадку пропускается воздух, по­даваемый турбовоздуходувкой машиной, оздух, проходя через насадку, нагревает- Ся температуры 1000... 1200 °С и по­ступает к фурменному устройству 14, а оттуда через фурмы 2 - в рабочее про­странство. Доменная печь имеет несколь­ко воздухонагревателей: в то время как в одних насадка нагревается, в других она отдает теплоту холодному воздуху, нагре­вая его. После охлаждения насадки возду­хом нагреватели переключаются.

Физико-химические процессы до­менной плавки. Условно процессы, про­текающие в доменной печи, разделяют на горение топлива; разложение компонен­тов шихты; восстановление железа; науг­лероживание железа; восстановление мар­ганца, кремния, фосфора, серы; шлакооб­разование. Все эти процессы проходят в доменной печи одновременно, но с разной интенсивностью, при различных темпера­турах и на разных уровнях.

Горение топлива. Вблизи фурм (см. рис. 2.1) углерод кокса, взаимодействуя с кислородом воздуха, сгорает. В результа­те горения выделяется теплота и образу­ется газовый поток, содержащий СО, С02, N& Н2, СН4 и др. При этом в печи не­сколько выше уровня фурм развивается температура выше 2000 °С. Горячие газы, поднимаясь, отдают теплоту шихтовым материалам и нагревают их, охлаждаясь до температуры 300... 400 °С у колош­ника.

Восстановление железа в доменной печи. Шихта (агломерат, кокс) опускается навстречу потоку газов, и при температу­ре 500... 570 °С начинается восстановле­ние оксидов железа.

Разложение компонентов шихты происходит в зависимости от ее состава. Если в доменную печь подается офлюсо­ванный агломерат, то эти процессы про­текают при агломерации и в доменной печи почти не идут. При работе на шихте, содержащей флюсы и часть сырой руды, в верхней части доменной печи разрушают­ся гидраты оксидов железа и алюминия. Известняк флюса диссоциирует по реак­ции СаСОз = СаО + С02.

В результате взаимодействия окси­дов железа с оксидом углерода и твердым углеродом кокса, а также с водородом происходит восстановление железа. Вос­становление газами называют косвенным, а восстановление твердым углеродом - прямым. Реакции косвенного восстанов­ления - экзотермические (сопровождают­ся выделением теплоты) - происходят главным образом в верхних горизонтах печи. Реакции прямого восстановления - эндо-термические (сопровождаются по­глощением теплоты), они протекают в нижней части доменной печи, где темпе­ратура более высокая.

 

Восстановление железа из руды в доменной печи происходит по мере про­движения шихты вниз по шахте печи и повышения температуры в несколько ста­дий - от высшего оксида к низшему:

Fe203 II Fe304 Ш FeO 3§ Fe,

Восстановление железа заканчивает­ся при 1100... 1200 °С. В доменной печи железо восстанавливается почти полно­стью. Потери его шлаком составляют не более 1 %.

Науглероживание железа. Восста­новление железа начинается в верхней части шахты доменной печи при 500... 570 °С и заканчивается в распаре при 1100... 1200 °С. При этих температурах восстановленное железо с Гщ» * 1539 °С находится в твердом состоянии или в виде губчатой массы. Однако уже в шахте до- менной печи наряду с восстановлением железа происходит и его науглерожива­ние при взаимодействии с оксидом угле­рода, коксом, сажистым углеродом. Это приводит к образованию жидкого распла­ва, который каплями начинает стекать в горн.

Эти капли, протекая по кускам кокса, насыщаются углеродом (4 % и более), марганцем, кремнием, фосфором, которые при температуре 1000... 1200 °С восста­навливаются из руды, а также обогащают­ся серой, содержащейся в коксе.

Марганец в виде оксидов в домен­ную печь вносится железной, марганце­вой рудами или агломератом и восстанав­ливается в шахте по реакции, аналогичной восстановлению оксидов железа: МпОг -> -> Мп203 -> Мп403 МпО. Оксид мар­ганца (МпО) восстанавливается только твердым углеродом с образованием кар­бида марганца (Мп3С) при температуре не ниже 1100 °С. Карбид марганца растворя­ется в железе, повышая содержание мар­ганца и углерода в чугуне. Другая часть МпО входит в состав шлака.

Кремний, содержащийся в руде в ви­де Si02, также частично восстанавливает­ся твердым углеродом и растворяется в железе. Другая часть Si02 переходит в шлак. Кремний восстанавливается при температурах не ниже 1450 °С.

Фосфор содержится в руде в виде соединений (FeO)3 • Р205 и (СаО)3 • При температурах выше 1000 °С фосфат


железа восстанавливается оксидом угле­рода и твердым углеродом с образованием фосфида железа. При температурах выше ,300 °С фосфор восстанавливается из фос­фата кальция. Фосфор и фосфид железа ре Р полностью растворяются в железе.

Сера присутствует в коксе и руде в виде органической серы и соединений FeS2, FeS, CaS04. Сера летуча, и поэтому часть ее удаляется с газом при нагреве шихты в печи, а часть в виде серы и FeS растворяется в чугуне. Вследствие реак­ции

FeS + CaO - CaS + FeO

часть серы в виде CaS удаляется в шлак. Фосфор и сера в чугуне являются вред­ными примесями.

Таким образом, в результате, процес­са восстановления оксидов железа, части оксидов марганца и кремния, фосфатов и сернистых соединении, растворения в железе С, Мп, Si, Р, S в доменной печи образуется чугун.

Образование шлака. Шлакообразова­ние активно происходит в распаре после окончания процессов восстановления же­леза путем сплавления флюсов, добавляе­мых в доменную печь для обеспечения достаточной жидкотекучести при темпе­ратуре 1400... 1450 °С, оксидов пустой породы и золы кокса. Основные составля­ющие доменного шлака: оксиды кремния (30... 45 %), оксиды кальция (40... 50 %), оксид алюминия (10... 25 %) и другие компоненты. Шлак стекает в горн и скап­ливается на поверхности жидкого чугуна благодаря меньшей плотности.

Чугун выпускают из печи каждые 3 - 4 ч, а шлак - через 1... 1,5 ч. Чугун выпускают через чугунную летку 16 (см. рис. 2.1) - отверстие в кладке, располо­женное несколько выше лещади, а шлак - через шлаковую летку 17. Чугунную лет­ку открывают бурильной машиной, после выпуска чугуна ее закрывают огнеупор­ной массой. Чугун и шлак сливают в чугу- новозные ковши и шлаковозные чаши. Чугун транспортируют в кислородно- конвертерные или мартеновские цехи для передела в сталь. Чугун, не используемый в жидком виде, разливают в изложницы разливочной машины, где он затвердевает в виде чушек-слитков массой 45 кг.

Продукты доменной плавки. Чугун - основной продукт доменной плавки. В до­менных печах получают чугун различного химического состава в зависимости от его назначения.

Передельный чугун выплавляют для передела его в сталь в конвертерах или мартеновских печах. Он содержит 4...4,4 % С, 0,6... 0,8 % Si, 0,25... 1,5 % Мп, 0,15... 0,3 % Р и 0,03...0,07 % S.

Литейный чугун используют на ма­шиностроительных заводах при производ­стве фасонных отливок. Он содержит 2,75... 3,25 % Si. Кроме чугуна в домен­ной печи выплавляют ферросплавы до­менные - сплавы железа с кремнием, мар­ганцем и другими элементами, применяе­мые для раскисления и легирования стали. К ним относятся ферросилиций (9... 13 % Si и до 3 % Мп), ферромарганец (70... 75 % Мп и до 2 % Si), зеркальный чугун (10... 25 % Мп и до 2 % Si).

Побочные продукты доменной плав­ки - шлак и доменный газ. Из шлака изго­товляют шлаковату, цемент, шлакоситал- лы, а доменный газ после очистки исполь­зуют как топливо для нагрева воздуха, вдуваемого в доменную печь.

2. Ручная дуговая сварка

При ручной дуговой сварке(рис.42, а) возбуждение дуги, ее поддержание, опускание электрода по мере его плавления и пере­мещение электрода вдоль свариваемых заготовок осуществляет сварщик.

В качестве электродов в этом случае применяют прутки из сварочной проволоки, покрытые специальным составом. В покры­тия электрода вводят элементы, способствующие стабилизации дуги и осуществляюшие защиту расплавленного металла от вред­ного воздействия окружающей среды, раскисление и легирование металла шва. По назначению электроды подразделяют: для сварки конструкционных углеродистых, низколегированных и легированных сталей, а также цветных металлов и сплавов и для наплавочных работ. Основным требованием, предъявляемым к электродам, является обеспечение необходимой прочности и нуж­ного структурного состава металла шва.

Электроды подразделяют на типы, обозначаемые буквой Э и последующей цифрой, указывающей предел прочности металла шва, выполненного данным электродом. Например, Э-42, Э-55,... Э-125 и т. д. Электроды каждого типа могут иметь несколько марок, определяющих систему легирования металла шва. На практике чаще всего применяют электроды диаметром 2—6 мм. Чем больше толщина свариваемого металла, тем больше должен быть диаметр электрода. Ручную дуговую сварку широко применяют в машинострое­нии при сварке заготовок из сталей и цветных металлов благодаря своей универсальности и возможности вести процесс во всех про­странственных положениях: нижнем, вертикальном, потолоч­ном. Основные недостатки этого способа — малая производитель­ность и необходимость высокой квалификации оператора.



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-04-30 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: