Связь между преобразованиями Фурье и Лапласа.




Преобразование Лапласа имеет вид:

(1)

На f(t) наложены условия:

1) f(t) определена и непрерывна на всем интервале: (-¥; ¥)

2) f(t) º 0, t Î (- ¥;0)

3) При M, S0 >0, для всех t > 0 выполняется условие |f(t)|<Me S0t

 

Если отказаться от условий 2 и 3, и считать, что f(t) принимает произвольное значение при t < 0, то вместо (1) можно рассмотреть следующий интеграл:

(2)

Формула (2) – двустороннее преобразование Лапласа.

Пусть в (1) и (2) p =a + in, где a и n – действительные числа.

Предположим, что Re (p) = a = 0, т.е.

(4)

(5)

(4) и (5) соответственно односторонние и двусторонние преобразования Фурье.

 

Для существования преобразования Фурье, функция должна удовлетворять условиям:

 

1) Должна быть определена на промежутке (-¥; ¥), непрерывна всюду, за исключением конечного числа точек разрыва первого рода.

2) Любой конечный промежуток оси t можно разделить на конечное число промежутков, в каждом из которых функция либо кусочно-гладкая, либо кусочно-монотонная.

3) Функция абсолютно интегрируема: , это условие выполняется, если |f(t)|<Me S0t

 

Из существования преобразования Лапласа не следует преобразование Фурье. Преобразования Фурье существуют для более узкого класса функций. Преобразования Фурье не существуют для постоянной и ограниченной функции: f(t) = C

Аналогично преобразования Фурье не существуют и для гармоничных функций:

т.к.

 

Если f(t) = 0 при t>0 и преобразование для этой функции существует, то оно может быть получено из таблицы оригиналов и изображений для преобразования Лапласа путем замены параметра t на iu, но при этом необходимо убедиться, что F(p) не обращается в число справа от мнимой оси.

Если f(t) ¹ 0, t<0

(6)

 

Обозначим

Очевидно, что (6’)

Функция (6) называется спектральной плотностью

В связи с изложенным можно указать два пути отыскания спектральной плотности:

1) Вычисление интеграла (5)

2) Использование преобразования Лапласа или Фурье.

 

 

Непосредственное вычисление спектральной плотности для абсолютно интегрируемой функции.

Функция F(iu) может быть представлена, как комплексная функция действительной переменной

(7)

| F(iu)| - амплитудное значение спектральной плотности, y (u) – фазовый угол.

В алгебраической форме: F(iu) = a(u) +ib(u)

(8)

(9)

Для непосредственного вычисления спектральной плотности вычисляется интеграл (6), а затем по формулам (8) и (9) определяется амплитудное значение | F(iu)| и фазовый угол y (u).

 

Пример.

Найти спектральную плотность импульса:

откуда , далее

 

Отыскание спектральной плотности для неабсолютно интегрируемых функций.

Прямое преобразование Фурье для таких функций не существует, существует преобразование Лагранжа.

Прямое преобразование Фурье необходимо:

1) Для облегчения процесса решения дифференциальных и интегральных уравнений.

2) Для исследования амплитудной и частотной характеристик спектральной плотности, определенной всюду на числовой оси.

Введем следующее определение спектральной плотности для неабсолютно интегрируемых функций:

Если для заданной функции y=f(t) существует непрерывное изображение по Лапласу F(p), то спектральной плотностью функции называется изображение функции по Лапласу при p = iu.

Спектральной плотностью F1(iu) неабсолютно интегрируемой функции называется предел от спектральной плотности F2(iua) абсолютно интегрируемой функции.

 

Список литературы

Для подготовки данной работы были использованы материалы с сайта https://www.ed.vseved.ru/



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2021-04-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: