Е)Циклон и антициклон: Циклон




[править]

Материал из Википедии — свободной энциклопедии

Перейти к: навигация, поиск

У этого термина существуют и другие значения, см. Циклон (значения).

Цикло́н (от др.-греч. κυκλῶν — «вращающийся») — атмосферный вихрь огромного (от сотен до нескольких тысяч километров) диаметра с пониженным давлением воздуха в центре.

 

Движение воздуха (пунктирные стрелки) и изобары (непрерывные линии) в циклоне в северном полушарии.

Воздух в циклоне циркулирует против часовой стрелки в северном полушарии и по часовой стрелке в южном. Кроме того, в воздушных слоях на высоте от земной поверхности до нескольких сот метров, ветер имеет слагаемое, направленное к центру циклона, по барическому градиенту (в сторону убывания давления). Величина слагаемого уменьшается с высотой.

Циклон — не просто противоположность антициклону, у них различается механизм возникновения. Циклоны постоянно и естественным образом появляются из-за вращения Земли, благодаря силе Кориолиса. Следствием теоремы Брауэра о неподвижной точке является наличие в атмосфере как минимум одного циклона или антициклона.

Различают два основных вида циклонов — внетропические и тропические. Первые образуются в умеренных или полярных широтах и имеют диаметр от тысячи километров в начале развития, и до нескольких тысяч в случае так называемого центрального циклона. Среди внетропических циклонов выделяют южные циклоны, образующиеся на южной границе умеренных широт (средиземноморские, балканские, черноморские, южнокаспийские и т. д.) и смещающиеся на север и северо-восток. Южные циклоны обладают колоссальными запасами энергии; именно с южными циклонами в средней полосе России и СНГ связаны наиболее сильные осадки, ветры, грозы, шквалы и другие явления погоды.

Тропические циклоны образуются в тропических широтах и имеют меньшие размеры (сотни, редко — более тысячи километров), но бо́льшие барические градиенты и скорости ветра, доходящие до штормовых. Для таких циклонов характерен также т. н. «глаз бури» — центральная область диаметром 20—30 км с относительно ясной и безветреной погодой. Тропические циклоны могут в процессе своего развития превращаться во внетропические. Ниже 8—10° северной и южной широты циклоны возникают очень редко, а в непосредственной близости от экватора — не возникают вовсе.

Циклоны в атмосфере Сатурна. Фотография зонда Кассини.

Циклоны возникают не только в атмосфере Земли, но и в атмосферах других планет. Например, в атмосфере Юпитера уже многие годы наблюдается так называемое Большое красное пятно, которое является, по всей видимости, долгоживущим антициклоном. Однако циклоны в атмосферах других планет изучены недостаточно.

[править] Шкала измерений

Шкала ураганов Саффира — Симпсона

 

 

Антициклон: Антициклон

[править]

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 31 января 2011; проверки требуют 25 правок.

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 31 января 2011; проверки требуют 25 правок.

Перейти к: навигация, поиск

Схема антициклона, 1915. Ветер движется по часовой стрелке

Антициклон — область повышенного атмосферного давления с замкнутыми концентрическими изобарами на уровне моря и с соответствующим распределением ветра. В низком антициклоне — холодном, изобары остаются замкнутыми только в самых нижних слоях тропосферы (до 1,5 км), а в средней тропосфере повышенное давление вообще не обнаруживается; возможно также наличие над таким антициклоном высотного циклона.

Высокий антициклон — теплый и сохраняет замкнутые изобары с антициклонической циркуляцией даже и в верхней тропосфере. Иногда антициклон бывает многоцентровым. Воздух в антициклоне в северном полушарии движется, огибая центр по часовой стрелке (то есть отклоняясь от барического градиента вправо), в южном полушарии — против часовой стрелки. Для антициклона характерно преобладание ясной или малооблачной погоды. Вследствие охлаждения воздуха от земной поверхности в холодное время года и ночью в антициклоне возможно образование приземных инверсий и низких слоистых облаков (St) и туманов. Летом над сушей возможна умеренная дневная конвекция с образованием кучевых облаков. Конвекция с образованием кучевых облаков наблюдается и в пассатах на обращенной к экватору периферии субтропических антициклонов. При стабилизации антициклона в низких широтах возникают мощные, высокие и теплые субтропические антициклоны. Стабилизация антициклонов происходит также в средних и в полярных широтах. Высокие малоподвижные антициклоны, нарушающие общий западный перенос средних широт, называются блокирующими.

Синонимы: область высокого давления, область повышенного давления, барический максимум.

Антициклоны достигают размера несколько тысяч километров в поперечнике. В центре антициклона давление обычно 1020—1030 мбар, но может достигать 1070—1080 мбар. Как и циклоны, антициклоны перемещаются в направлении общего переноса воздуха в тропосфере, то есть с запада на восток, отклоняясь при этом к низким широтам. Средняя скорость перемещения антициклона составляет около 30 км/ч в Северном полушарии и около 40 км/ч в Южном, но нередко антициклон надолго принимает малоподвижное состояние.


Признаки антициклона:

  • Ясная или малооблачная погода
  • Отсутствие ветра
  • Отсутствие осадков
  • Устойчивый характер погоды (заметно не меняется во времени, пока существует антициклон)

В летний период антициклон приносит жаркую малооблачную погоду. В зимний период антициклон приносит сильные морозы, иногда также возможен морозный туман.

Важной особенностью антициклонов является образование их на определённых участках. В частности, над ледовыми полями формируются антициклоны. И чем мощнее ледовый покров, тем сильнее выражен антициклон; именно поэтому антициклон над Антарктидой очень мощный, а над Гренландией маломощный, над Арктикой — средний по выраженности. Мощные антициклоны также развиваются в тропическом поясе.

Интересным примером резких изменений в формировании различных воздушных масс служит Евразия. В летнее время над её центральными районами формируется область низкого давления, куда засасывается воздух с соседних океанов. Особенно сильно это проявляется в Южной и Восточной Азии: бесконечная вереница циклонов несет влажный тёплый воздух вглубь материка. Зимой ситуация резко меняется: над центром Евразии формируется область высокого давления — Азиатский максимум, холодные и сухие ветры из центра которого (Монголия, Тыва, Юг Сибири), расходящиеся по часовой стрелке, разносят холод вплоть до восточных окраин материка и вызывают ясную, морозную, практически бесснежную погоду на Дальнем Востоке, в Северном Китае. В западном направлении антициклоны влияют менее интенсивно. Резкие снижения температуры возможны только, если центр антициклона переместится к западу от точки наблюдения, потому что ветер меняет направление с южного на северный. Подобные процессы часто наблюдаются на Восточно-Европейской равнине.

Крупнейший антициклон в Солнечной системе — Большое красное пятно на Юпитере.

Содержание [убрать]
  • 1 Блокирующий антициклон
  • 2 Стадии развития антициклонов
  • 3 География постоянных антициклонов
  • 4 Источники и ссылки
  • 5 См. также

[править] Блокирующий антициклон

Блокирующий антициклон — практически неподвижный мощный антициклон, который обладает способностью не пропускать другие воздушные массы на занятую собой территорию. Средний срок жизни такого антициклона — от трёх до пяти суток, лишь 1 % антициклонов дотягивает до 15 суток. [1]

Однако в 1972 году и 2010 году антициклон в летнее время (на Европейской территории России) существовал в обоих случаях практически два месяца, вызвав катастрофическую засуху и сильнейшую жару, а также лесные пожары (как закономерное явление). Аналогичная ситуация повторилась в 2012 году в Сибири, где блокирующий антициклон просуществовал почти три месяца[

А) Климат

[править]

Материал из Википедии — свободной энциклопедии

Перейти к: навигация, поиск

Кли́мат (др.-греч. κλίμα (род. п. κλίματος) — наклон[1]) — многолетний режим погоды, характерный для данной местности в силу её географического положения.

Анимация сезонных изменений, особенно снежный покров в течение года

Климат — статистический ансамбль состояний, через который проходит система: гидросфера → литосфера → атмосфера за несколько десятилетий. Под климатом принято понимать усреднённое значение погоды за длительный промежуток времени (порядка нескольких десятилетий) то есть климат — это средняя погода. Таким образом, погода — это мгновенное состояние некоторых характеристик (температура, влажность, атмосферное давление). Отклонение погоды от климатической нормы не может рассматриваться как изменение климата, например, очень холодная зима не говорит о похолодании климата. Для выявления изменений климата нужен значимый тренд характеристик атмосферы за длительный период времени порядка десятка лет.

Погода

[править]

Материал из Википедии — свободной энциклопедии

Перейти к: навигация, поиск

У этого термина существуют и другие значения, см. Погода (значения).

Гроза близ Мадейры

Пого́да — совокупность значений метеорологических элементов и атмосферных явлений, наблюдаемых в определенный момент времени в той или иной точке пространства. Понятие «Погода» относится к текущему состоянию атмосферы, в противоположность понятию «Климат», которое относится к среднему состоянию атмосферы за длительный период времени. Если нет уточнений, то под термином «Погода» понимают погоду на Земле. Погодные явления протекают в тропосфере (нижней части атмосферы) и в гидросфере.

Выделяют периодические и непериодические изменения погоды. Периодические изменения погоды зависят от суточного и годового вращения Земли. Непериодические обусловлены переносом воздушных масс. Они нарушают нормальный ход метеорологических величин (температура, атмосферное давление, влажность воздуха и т.д.). Несовпадения фазы периодических изменений с характером непериодических приводят к наиболее резким изменениям погоды.

Можно выделить два типа метеорологической информации:

  • первичную информацию о текущей погоде, получаемую в результате метеорологических наблюдений.
  • информацию о погоде в виде различных сводок, синоптических карт, аэрологических диаграмм, вертикальных разрезов, карт облачности и т. д.

Успешность разрабатываемых прогнозов погоды в значительной степени зависит от качества первичной метеорологической информации

Б) Факторы формирования климата

Климат России, как и любого региона, формируется под воздействием ряда климатообразующих факторов и процессов. Анализ их раскрывает генезис климата, помогает объяснить географическое распространение его элементов, позволяет понять климатические особенности отдельных регионов страны.

Основными климатообразующими процессами являются радиационный и циркуляционный. Особенности их проявления, взаимодействие этих процессов зависят от географического положения страны, особенностей рельефа и влияния свойств подстилающей поверхности. Поэтому и географическое положение, и подстилающая поверхность также относятся к факторам формирования климата.

14) а) ТЕПЛОВОЙ БАЛАНС АТМОСФЕРЫ -соотношение прихода и расхода энергии в атмосфере Земли. Т. б. а. является составляющей теплового баланса Земли. Спецификой Т. б. а. является многослойность, к-рая обеспечивает сложное распределение (стратификацию) темп-ры в атмосфере З е м л и (см. также Атмосфера верхняя),

Приходящее на верх. границу атмосферы (H ~1000 км над поверхностью Земли) излучение Солнца прежде всего проходит самый верх. слой атмосферы - термосферу. В термосфере на высотах более 100 км происходит практически полное поглощение атомным и молекулярным кислородом, а также молекулярным азотом солнечного излучения с длиной волны менее 0,1 мкм. Благодаря этому темп-pa в термосфере растёт с высотой: от ~200 К при H =90 км до ~1000 К при H >= 600 км.

На высотах менее 100 км связь поглощения солнечного излучения со стратификацией темп-ры в атмосфере становится менее заметной. Мин. темп-ры в атмосфере отмечаются на уровне мезопаузы на высоте Н~ 90 км. Ниже этого уровня располагается слой мезосферы, в к-ром темп-ра растёт до 270 К при убывании высоты до уровня стратопаузы (H ~50 км). Рост темп-ры в мезосфере происходит параллельно с практически полным, поглощением молекулами кислорода солнечного излучения с длиной волны менее 0,2 мкм. При уменьшении высоты в стратосфере наблюдается как увеличение поглощения солнечного излучения с длиной волны менее 0,3 мкм молекулами озона, так и радиац, выхолаживание молекулами двуокиси углерода.

На высотах 25-30 км происходит практически полное поглощение озоном солнечного излучения с длиной волны меньше 0,3 мкм. Далее с уменьшением высоты происходит уменьшение темп-ры до 220 К на уровне тропопаузы. Распределение темп-ры в тропосфере определяется её тепловым взаимодействием с подстилающей поверхностью и конвективным переносом скрытого и явного тепла по высоте и по горизонтали. Скорости и направления переноса тепла в слоях, расположенных на разных высотах, могут быть существенно различными. Тропосфера прогревается за счёт конвективного и турбулентного теплообмена, поглощения длинноволнового излучения поверхности Земли, а также за счёт поглощения тепла, выделяющегося при конденсации в атмосфере водяного пара.

Среднегодовой глобальный Т. б. а. определяется разностью поглощенной атмосферой энергии (солнечного излучения и излучения поверхности Земли) и излучённой энергии (к подстилающей поверхности Земли и в космос).

Уходящая в космос энергия теплового излучения планеты, равная 235 Вт.м-2, соответствует тепловому излучению эфф. атм. слоя с темп-рой 253 К, Такую темп-ру имеет верх. граница облаков, расположенная на высотах от 4 до 7 км над поверхностью Земли. Альбедо системы Земля - атмосфера определяется в осн. отражением коротковолновой радиации от тропосферных облаков.

Важнейшей характеристикой Т. б. а. является парниковый эффект системы Земля - атмосфера. Увеличение кол-ва облаков в тропосфере ведёт к увеличению альбедо системы Земля - атмосфера и парникового эффекта.

В светлое время суток эффект увеличения альбедо превалирует над парниковым и приводит к уменьшению притока энергии в систему Земля - атмосфера. В тёмное время суток наличие облаков резко увеличивает парниковый эффект и уменьшает потери энергии системой. Ледниковые периоды на Земле, по-видимому, были обусловлены увеличением альбедо системы Земля - атмосфера, происшедшим за счёт выброса действующими вулканами в стратосферу большой массы частиц вулканич. пепла. Всё увеличивающееся сжигание природного топлива может привести к значит. увеличению в атмосфере содержания двуокиси углерода. Рост концентрации этого газа в атмосфере приведёт к увеличению парникового эффекта, что может повлечь за собой потепление климата Земли.

Радиационный баланс атмосферы

 

Алгебраическая сумма потоков радиации, поглощаемой и излучаемой атмосферой. Приходной частью Р. Б. А. являются поглощенные атмосферой прямая и рассеянная солнечная радиация и длинноволновое излучение земной поверхности. Расходная часть состоит из собственного излучения атмосферы к земной поверхности (встречное излучение) и в мировое пространство (уходящая длинноволновая радиация). Отсюда уравнение Р. Б. А. напишется: где Е0 — эффективное излучение земной поверхности, E — уходящая радиация земной поверхности и атмосферы, Iа—солнечная радиация, прямая и рассеянная, поглощенная атмосферой. Поглощение солнечной радиации в атмосфере сравнительно мало, и Р. Б. А. определяется потоками эффективного излучения и уходящей радиации. Так как поток уходящей радиации всегда больше потока эффективного излучения, Р. Б. А. всегда отрицателен. В среднем за длительное время по Земле в целом приближенные оценки составляющих Р. Б. А. таковы: если принять приток солнечной радиации на границу атмосферы за 100 единиц, то E0= + 15, Iа = +20, E = — 65, откуда Ra = — 30, что составляет около 70 ккал/см2·год. Отрицательный Р. Б. А. компенсируется на 75% приходом тепла конденсации и на 25% турбулентным переносом тепла от земной поверхности.

 

Водный баланс атмосферы

 

Рассматриваемые совместно статьи прихода и расхода воды, практически — водяного пара, внутри определенной области атмосферы или в атмосфере в целом. При этом изменение влагосодержания в атмосфере над определенным районом за то или иное время равно алгебраической сумме: вноса водяного пара (и облаков) воздушными течениями из других районов; испарения с земной поверхности в данном районе; выноса водяного пара (и облаков) воздушными течениями за пределы района; выпадения осадков в данном районе. Для атмосферы в целом изменение влагосодержания равно разности между испарением и осадками за то же время.

 

 

А) Гидросфера

[править]

Материал из Википедии — свободной энциклопедии

Перейти к: навигация, поиск

Круговорот воды в гидросфере

Гидросфе́ра (от др.-греч. Yδωρ — вода и σφαῖρα — шар) — это водная оболочка Земли.

Она образует прерывистую водную оболочку. Средняя глубина океана составляет 3800 м, максимальная (Марианская впадина Тихого океана) — 11 022 метра. Около 97 % массы гидросферы составляют соленые океанические воды, 2,2 % — воды ледников, остальная часть приходится на подземные, озерные и речные пресные воды. Общий объём воды на планете около 1 532 000 000 кубических километров. Масса гидросферы примерно 1,46*1021 кг. Это в 275 раз больше массы атмосферы, но лишь 1/4000 от массы всей планеты. Гидросферу на 94% составляют воды Мирового океана, в которых растворены соли (в среднем 3,5%), а также ряд газов. Верхний слой океана содержит 140 трлн тонн углекислого газа, а растворенного кислорода — 8 трлн тонн. Область биосферы в гидросфере представлена во всей ее толще, однако наибольшая плотность живого вещества приходится на поверхностные прогреваемые и освещаемые лучами солнца слои, а также прибрежные зоны.

В общем виде принято деление гидросферы на Мировой океан, континентальные воды и подземные воды. Большая часть воды сосредоточена в океане, значительно меньше — в континентальной речной сети и подземных водах. Также большие запасы воды имеются в атмосфере, в виде облаков и водяного пара. Свыше 96 % объёма гидросферы составляют моря и океаны, около 2 % — подземные воды, около 2 % — льды и снега, около 0,02 % — поверхностные воды суши. Часть воды находится в твёрдом состоянии в виде ледников, снежного покрова и в вечной мерзлоте, представляя собой криосферу.

Поверхностные воды, занимая сравнительно малую долю в общей массе гидросферы, тем не менее играют важнейшую роль в жизни наземной биосферы, являясь основным источником водоснабжения, орошения и обводнения. Сверх того эта часть гидросферы находится в постоянном взаимодействии с атмосферой и земной корой.

Взаимодействие этих вод и взаимные переходы из одних видов вод в другие составляют сложный круговорот воды на земном шаре. В гидросфере впервые зародилась жизнь на Земле. Лишь в начале палеозойской эры началось постепенное переселение животных и растительных организмов на сушу. Океаническую кору слагают осадочный и базальтовый слои.

Б)

 

 

ВОДНЫЙ БАЛАНС ЗЕМЛИ

ВОДНЫЙ БАЛАНС ЗЕМЛИ

ВОДНЫЙ баланс ЗЕМЛИ - соотношение, связывающее количество воды, поступающей на поверхность земного шара в виде осадков, и количество воды, испаряющейся с поверхности суши и Мирового ок. за определенный период времени. В средний многолетний период годовое количество осадков равно 1020 мм, испарение с поверхности Мирового ок. 880 мм и с суши 140 мм. Водный баланс Земли - количественное выражение влагооборота на Земле. Он тесно связан с тепловым балансом и наряду с ним - один из важных показателей для характеристики природных зон.

 

В) Морские течения — постоянные или периодические потоки в толще мирового океана и морей. Различают постоянные, периодические и неправильные течения; поверхностные и подводные, теплые и холодные течения. В зависимости от причины течения, выделяются ветровые и плотностные течения. Расход течения измеряется в Свердрупах.

Классификация течений

Течения классифицируют по различным признакам: по вызывающим их силам (генетические классификации), по устойчивости, по глубине расположения в толще вод, по характеру движения, по физико-химическим свойствам.

Выделяют три группы течений:

  • Градиентные течения, вызванные горизонтальными градиентами гидростатического давления, возникающими при наклоне изобарических поверхностей относительно изопотенциальных (уровневых) поверхностей
    • Плотностные, вызванные горизонтальным градиентом плотности
    • Компенсационные, вызванные наклоном уровня моря под воздействием ветра
    • Бароградиентные, вызванные неравномерным атмосферным давлением над морской поверхностью
    • Сейшевые, возникающие в результате сейшевых колебаний уровня моря
    • Стоковые или сточные, возникающие в результате возникновения избытка воды в каком-либо районе моря (как результат притока материковых вод, осадков, таяния льдов)
  • Течения, вызванные ветром
    • Дрейфовые, вызванные только влекущим действием ветра
    • Ветровые, вызванные и влекущим действием ветра, и наклоном уровня моря и изменением плотности воды, вызванными ветром
  • Приливные течения, вызванные приливами.
    • Отбойное течение

Приливные течения наиболее сильные, особенно проявляются у берега, на мелководье, в проливах и устьях рек.

В океанах и морях течения обычно обусловлены совокупным действием нескольких сил. Течения, которые продолжают существовать после окончания действия вызвавших их сил, называют инерционными.

По изменчивости течения разделяют на периодические и непериодические.

Периодические течения меняются с определённым периодом. К таким течениям относят приливные течения.

Непериодические течения связаны с временными причинами (например, возникают под воздействием циклона).

Выделяют течения, скорости и направления которых мало меняются за сезон (муссонные) или за год (пассатные).

Течения, которые не изменяются во времени, называют установившимися течениями, а изменяющиеся во времени — неустановившимися.

16) а)

 

 

Водный баланс

Перевод

Водный баланс

(a. balance of water; н. Wasserbilanz; ф. bilan d'eau; и. balance de agua) - количеств. выражение круговорота воды в атмосфере, гидросфере, на Земле в целом или отд. её p-нах. Xарактеризует все формы прихода и расхода воды в жидком, парообразном и твёрдом (лёд) состояниях. Для суши земного шара (имеющей сток в океан) испарение равно кол-ву выпадающих осадков за вычетом речного стока и подземного стока в океан (минующего речную сеть), для Mирового ок. - атм. осадкам, речному стоку и притоку подземных вод c материков, для замкнутых ("бессточных") областей суши и всей Земли в целом испарение соответствует осадкам (табл.).

 

 

Б)

Вода в атмосфере  
  В атмосфере вода находится в трех агрегатных состояниях — газообразном (водяной пар), жидком (капли дождя) и твердом (кристаллики снега и льда). По сравнению со всей массой воды на планете, в атмосфере её совсем немного — около 0,001%, но её значение огромно. Облака и водяные пары поглощают и отражают избыток солнечной радиации, а также регулируют ее поступление на Землю. Одновременно они задерживают встречное тепловое излучение, идущее от поверхности Земли в межпланетное пространство. Содержание воды в атмосфере определяет погоду и климат местности. От него зависит, какая установится температура, образуются ли облака над данной территорией, пойдёт ли из облаков дождь, выпадет ли роса. Водяной пар непрерывно поступает в атмосферу, испаряясь с поверхности водоёмов и почвы. Его выделяют и растения — этот процесс называется транспирацией. Молекулы воды сильно притягиваются друг к другу благодаря силам межмолекулярного притяжения, и Солнцу приходится тратить очень много энергии, чтобы разделить их и превратить в пар. На создание одного грамма водяного пара затрачивается 537 калорий солнечной энергии - прим. от geoglobus.ru. Нет ни одного вещества, у которого удельная теплота испарения была бы больше, чем у воды. Подсчитано, что за одну минуту Солнце испаряет на Земле миллиард тонн воды. Водяной пар поднимается в атмосферу вместе с восходящими потоками воздуха. Охлаждаясь, он конденсируется, образуются облака, и при этом выделяется огромное количество энергии, которую водяной пар возвращает атмосфере. Именно эта энергия заставляет дуть ветры, переносит сотни миллиардов тонн воды в облаках и увлажняет дождями поверхность Земли. Испарение состоит в том, что молекулы воды, отрываясь от водной поверхности или влажной почвы, переходят в воздух и превращаются в молекулы водяного пара. В воздухе они двигаются самостоятельно и переносятся ветром, а их место занимают новые испарившиеся молекулы. Одновременно с испарением с поверхности почвы и водоёмов происходит и обратный процесс — молекулы воды из воздуха переходят в воду или почву. Воздух, в котором количество испаряющихся молекул водяного пара равно количеству возвратившихся молекул, называется насыщенным, а сам процесс — насыщением. Чем больше температура воздуха, тем больше водяного пара может в нём содержаться. Так, в 1м3 воздуха при температуре +20 °С может содержаться 17 г водяного пара, а при температуре -20 °С только 1 г водяного пара. При малейшем понижении температуры насыщенный водяным паром воздух уже не способен больше вместить влагу и из него выпадают атмосферные осадки, например, образуется туман или выпадает роса - прим. от geoglobus.ru. Водяной пар при этом конденсируется — переходит из газообразного состояния в жидкое. Температура, при которой находящийся в воздухе водяной пар насытит его и начнётся конденсация, называется точка росы. Влажность воздуха характеризуется несколькими показателями.

 

 

18) а)

 

 

Геохимические циклы

Перевод

геохимические циклы

геохими́ческие ци́клы

последовательные ряды геохимических процессов, в которых химические элементы мигрируют, участвуют в различных физико-химических превращениях с образованием минералов, претерпевают изменения изотопного состава и возвращаются в исходное состояние. Геохимические циклы в земной коре включают магматические, постмагматические, гипергенные, осадочные и метаморфические процессы.

* * *

ГЕОХИМИЧЕСКИЕ ЦИКЛЫ

ГЕОХИМИ́ЧЕСКИЕ ЦИ́КЛЫ, последовательные ряды геохимических процессов, в которых химические элементы мигрируют, участвуют в различных физико-химических превращениях с образованием минералов (см. МИНЕРАЛ), претерпевают изменения изотопного состава и возвращаются в исходное состояние. Геохимические циклы в земной коре включают магматические, постмагматические, гипергенные, осадочные и метаморфические процессы.

Б)

 

 

БИОГЕОХИМИЧЕСКИЕ ЦИКЛЫ

БИОГЕОХИМИЧЕСКИЕ ЦИКЛЫ

биогеохимический круговорот веществ, обмен веществом и энергией между разл. компонентами биосферы, обусловленный жизнедеятель ностью организмов и носящий циклич. характер. Термин «Б. п.» введён в 10-х гг. 20 в. В. И. Вернадским, разработавшим теоретич. основы биогеохимич. цикличности в учении о биосфере и трудах по биогеохимии. Все Б. ц. в природе взаимосвязаны, составляют динамич. основу существования жизни, а нек-рые из них (циклы С, О, Н, N, S, Р, Са, К. Si и др. т. н. биогенных элементов) являются ключевыми для понимания эволюции и совр. состояния биосферы. Движущими силами Б. ц. служат потоки энергии Солнца (более широко — космоса) и деятельность живого вещества (совокупности всех живых организмов), приводящие к перемещению огромных масс химич. элементов, концентрированию и перераспределению аккумулированной в процессе фотосинтеза энергии. Благодаря фотосинтезу и непрерывно дейстнующим циклич. круговоротам биогенных элементов создаётся устойчивая организованность биосферы Земли, осуществляется её нормальное функционирование. Нормальные (ненарушенные) Б. ц. в биосфере не являются замкнутыми, хотя степень обратимости годичных циклов важнейших биогенных элементов достигает 95—98%. Неполная обратимость (незамкнутость) — одно из важнейших свойств Б. ц., имеющее планетарное значение. За всю историю развития биосферы (3,5—3.8 млрд. лет) доля вещества, выходящая из биосферного цикла (длительностью от десятков и сотен до неск. тыс. лет) в геол. цикл (длительностью в млн. лет), обусловила биогенное накопление кислорода и азота в атмосфере, разл. химич. элементов и соединений в земной коре. Особенно показателен Б. ц. углерода. Ежегодно и:) биосферного Б. ц. наземных экосистем выходит («сбрасывается») в геол. цикл ок. 130 т углерода, что составляет всего 10 — 18% от запасов углерода, находящихся в обращении в совр. биосфере. В течение фанерозоя (ок. 600 млн. лет) за счёт неполной обратимости цикла углерода в ископаемых осадках накопились огромные запасы углеродистых отложений (известняков, битумов, углей, нефтей и др.), оцениваемые в 1016 —1017 т. Сложившаяся в ходе развития биосферы направленность планетарных и региональных Б. ц. привела к созданию устойчивого биогеохимич. (т. н. нормального) фона, характерного для той или иной местности. Этот фон различается для определённых регионов биосферы, в пределах к-рых по недостатку или избытку определённых химич. элементов выделяются естественные геохимич. аномалии — биогеохимич. провинции. С вариациями исторически сложившегося общего геохимич. фона территории и естественными биогеохимич. аномалиями, отражающими реально существующую неоднородность химич. состава биосферы, связаны мн. эндемичные болезни животных и человека. Глобальный характер хоз. деятельности человека приводит к качественным изменениям в естественной биогеохимич. цикличности природных процессов биосферы. По ряду параметров масштабы антропогенных воздействий сопоставимы с кол-вом веществ, вовлечённых в нормальные Б. ц. Техногенные продукты, поступающие в биосферу, перегружают нормальное её функционирование и выпадают частично или полностью из системы устойчивых Б. ц. Возникает новый тип техногенных геохимич. аномалий, наз. «неоаномалиями» или «антропоаномалиями». Они форми руются на нормальном биогеохимич. фоне в чрезвычайно короткие сроки и охватывают не только живое вещество, но и биокосные тела биосферы (атмосферу, почвы, природные воды), лроникают в глубокие горизонты земной коры. Происходит нарушение отлаженных во времени природных Б. ц. биосферы. Для ряда элементов и соединений Б. ц. становятся природно-антропогенными (циклы тяжёлых металлов, азота, серы, фосфора, калия и др.). Нек,-рые создаваемые человеком материалы (пластмассы, детергенты и др. продукты хим. синтеза — г. н. ксенобиотики) не включаются в природные и природно-антропогенные циклы и не перерабатываются в биосфере. Меры борьбы с нарушением Б. ц. связаны с природоохранной деятельностью, созданием малоотходных технологий, широкой реутилизацией продуктов пром. и с.-х. произ-ва, с поисками путей оптимизации осн. характеристик Б. ц. и возможностью разумного управления ими. См. также ст. Биосфера

 

 

19)

 

ЦИКЛ УГЛЕРОДА

ЦИКЛ УГЛЕРОДА


круговорот углерода, - циклическое перемещение углерода между миром живых существ и неорганическим миром атмосферы, морей, пресных вод, почвы и скал. Это один из важнейших биогеохимических циклов, включающий множество сложных реакций, в ходе которых углерод переходит из воздуха и водной среды в ткани растений и животных, а затем возвращается в атмосферу, воду и почву, становясь снова доступным для использования организмами. Поскольку углерод необходим для поддержания любой формы жизни, всякое вмешательство в круговорот этого элемента влияет на количество и разнообразие живых организмов, способных существовать на Земле

 

 

20)



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-12-07 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: