Силы, действующие на судно в процессе управления и маневрирования.




Маневренные элементы судна.

Общий случай движения судна описывается системой из трех диф-ференциальных уравнений движения: двух уравнений сил — по продольной X и поперечной Y осям и уравнения моментов вокруг вертикальной оси Z.

Эта система в несколько упрощенном варианте имеет вид:

(7.1)

Первое уравнение системы характеризует движение судна по оси «X» при разгоне и торможении, поэтому его решение позволяют оценивать инерционно-тормозные характеристики судна. Второе уравнение описывает закономерности поперечного смещения судна. Третье уравнение, характеризующее угловое движение, используется при оценки управляемости судов. Из данной системы видно, что при равномерном и прямолинейном движении судна, левые части уравнений будут равны нулю, а поперечного движения не будет. Исходя из этого система уравнений примет вид:

Pe = RX + AX + PPX

G

VX

PPX Pe AX RX

Рис. 7.1. Силы, действующие на судно при прямолинейном движении.

Маневренными элементами судна называют свойства, характеризующие его способность развивать, поддерживать и изменять режим движения. Основными маневренными элементами судна являются ходкость, инерция, поворотливость и управляемость.

Ходкость — способность судна развивать заданную скорость поступательного движения при эффективном использовании движителями мощности главных механизмов.

Ходкость характеризуется скоростью судна при равномерном прямо-линейном движении. Она зависит от числа оборотов движителей, мощности главных механизмов, расхода горючего, водоизмещения, состояния корпуса, рулей и выступающих частей, а также гидрометеорологических условий плавания.

Инерция — способность судна сохранять движение, соответствующее первоначальному режиму работы двигательно-движительного комплекса после изменения этого режима. Основными данными, характеризующими инерцию, являются время и расстояние, необходимые судну для остановки или приобретения другой заданной скорости при изменении режима работы машин.

Управляемость – способность судна совершать движение по заданной траектории. Управляемость объединяет два свойства судна – устойчивость на курсе и поворотливость.

Устойчивость на курсе – способность судна сохранять прямолинейное направление движения.

Поворотливость — способность судна изменять направление движения под воздействием руля или машин или руля и машин одновременно. Поворотливость определяется углом перекладки руля в градусах; площадью, формой, расположением и количеством рулей; площадью подводной части продольного сечения судна; характером обводов судна, особенностями его оконечностей и отношением длины судна к ширине.

 

Устойчивости на курсе в известной мере противоречит поворотливость судна: при увеличении устойчивости на курсе затрудняется изменение направления движения судна, т. е. ухудшается его поворотливость. Но с другой стороны, чрезмерная поворотливость судна затрудняет его движение в постоянном направлении; в этом случае удержание судна на курсе связано с напряженной работой рулевого и частой перекладкой, руля.

 

Морские суда должны обладать управляемостью, при которой устойчивость на курсе не затрудняет поворотливости судна, а поворотливость не мешает судну под действием руля следовать в избранном направлении, т. е. иметь достаточную устойчивость на курсе.

Устойчивость судна на курсе и его поворотливость зависят от взаимного расположения двух точек: приложения силы сопротивления воды и центра тяжести судна. На судне, следующем прямым курсом, эти две точки расположены в диаметральной плоскости, причем точка приложения силы R сопротивления воды может быть расположена или впереди или позади центра тяжести судна.

При работе машины на передний ход в центре тяжести судна приложена полезная сила упора винтов Ре, направленная в нос, и во второй точке приложена сила R сопротивления воды, направленная в корму. При следовании судна прямым курсом эти силы независимо от их взаимного расположения уравновешиваются и на уклонение с курса не влияют.

Предположим, что под действием внешней силы, чаще всего ветра или волны, судно незначительно уклонилось от курса. В первоначальный момент к центру тяжести судна будет приложена сила инерции Q, направленная по заданному курсу, и сила сопротивления воды R, действующая в противоположном направлении.

Рис.7.2. Действия силы инерции и силы сопротивления воды при уходе судна с курса.

Разложим эти силы на составляющие, направленные вдоль диаметральной плоскости судна и перпендикулярно к ней. Составляющие Qx и Rx, лежащие в диаметральной плоскости, на уклонение судна с курса влияния не окажут (рис. 7.2,а). Составляющие Qv и Ry, действующие перпендикулярно диаметральной плоскости, образуют пару, влияющую на уклонение судна с курса. Плечом этой пары будет расстояние между центром тяжести судна и точкой приложения сопротивления воды В зависимости от взаимного расположения указанных точек пара сил Qy и Ry может или препятствовать или способствовать дальнейшему уклонению судна с курса. Так, в случае расположения точки приложения силы сопротивления воды впереди центра тяжести пара сил будет увеличивать уклонение с курса; в другом случае (рис. 7.2,б), когда точка приложения силы сопротивления воды находится позади центра тяжести судна, составляющие Qy и Ry образуют пару, способствующую возвращению судна на курс; при таком расположении рассма­триваемых точек устойчивость на курсе будет сохранена, но путем снижения поворотливости судна. Опытными данными установлено, что лучшая управляемость достигается тогда, когда точка приложения силы сопротивления воды совпадает с центром тяжести судна или находится несколько позади него. В этом случае перекладкой руля достигается как удержание судна на курсе, так и выполнение различных поворотов при маневрировании. Как показывают теоретические исследования и опытные данные, современные морские суда не обладают в полной мере устойчивостью на курсе. Даже при отсутствии ветра и волнения судно периодически отклоняется от курса, и его возвращают к заданному направлению действием руля.

Обычно считают судно устойчивым на курсе, если при ветре и волнении не свыше 3 баллов перекладку руля приходится делать не более 4—6 раз в минуту, причем требуется выводить руль из диаметральной плоскости не более чем на 2—3° на каждый борт. Таким образом, частота и угол перекладки руля для удержания судна на курсе служат показателем устойчивости данного судна на заданном курсе.

Маневренные элементы судна в процессе его эксплуатации постоянно претерпевают изменения. Существенное влияние на них оказывают изменения гидрометеорологической обстановки, срок службы судна, характер обрастания подводной части корпуса судна и ряд других причин.

Маневренные элементы определяются по специальной программе на заводских и государственных испытаниях после постройки, капитального ремонта и модернизации судна. Проверочные определения маневренных элементов производятся после среднего ремонта, докования, длительной стоянки судна при интенсивном обрастании корпуса, смены гребных винтов или при обнаружении больших расхождений с данными предыдущих испытаний. Определение маневренных элементов проводят судоводители судна.

 

Силы, действующие на судно в процессе управления и маневрирования.

Свойства крыла

Свойства крыла применительно к корпусу судна следующие. Корпус судна в подводной и надводной частях представляет удли­ненное тело, симметричное относительно ДП, т. е. подобен верти­кальному крылу симметричного профиля.

Теория крыла, рассматриваемая в гидромеханике судна, поз­воляет определить характер распределения аэро- и гидродина­мических воздействий на корпус при его движении на границе двух сред и найти величину, направление и точку приложения равнодействующих этих сил, а значит аэро- и гидродинамические моменты относительно вертикальной оси. Эти данные в сочетании с силами и моментами, приложенными к корпусу со стороны средств управления, определяют поступательное и угловое движе­ние судна данной массы.

Теоретические расчеты сил и моментов, возникающих на кор­пусе судна, сложны и трудоемки, поэтому не всегда могут исполь­зоваться при практическом маневрировании. Тем не менее, суще­ствуют общие закономерности, знание которых имеет большое значение для правильной оценки и предсказания поведения судна как объекта управления.

Для получения этих закономерностей рассмотрим основные свойства крыла применительно к корпусу судна.

1. Если крыло перемещается прямолинейно в потоке воды или воздуха под некоторым углом атаки, то, помимо силы лобового сопротивления, направленной противоположно движению, возни­кает также подъемная сила, направленная перпендикулярно набе­гающему потоку. Величина подъемной силы в первом приближе­нии пропорциональна углу атаки. Она может существенно превышать силу лобового сопротивления, в связи с чем равнодей­ствующая этих сил не совпадает с направлением потока, а откло­нена в сторону траверзного направления.

2. Точка приложения равнодействующей силы смещена по ДП от центра площади крыла навстречу потоку. Величина этого смещения (плечо поперечной проекции гидродинамической си­лы) тем больше, чем острее угол атаки. При углах атаки, близких к 90°, плечо стремится к нулю, т. е. точка приложения приближа­ется к центру площади; для надводной части — к центру парус­ности (ЦП), для подводной — к центру площади проекции по­груженной части на ДП, называемому центром бокового сопротивления (ЦБС).

Применительно к подводной части корпуса углом атаки явля­ется угол дрейфа, а к надводной — курсовой угол кажущегося ветра.

При изучении вопросов управления судном удобнее рассматри­вать вместо сил, связанных с направлением движения, проекции их равнодействующей на судовые оси — продольную X и попе­речную Y.

Рис. 4.1. Гидродинамическая сила R, приложенная к корпусу судна и ее проекции на оси X и Y

На рис. 4.1 в качестве примера показаны гидродинамическая сила R и ее составляющие (подъемная Rпод и лобового сопротивле­ния Ялоб),а также проекции силы R на судовые оси (поперечная Ry и продольная Rx). Очевидно, что поперечная гидродинамическая сила Ry создает относительно вертикальной оси, проходящей через центр тяжести (ЦТ) судна, момент RylR.

Отметим, что ЦБС располагается всегда вблизи ЦТ, а положе­ние ЦП зависит от архитектуры надводной части и от дифферента судна.

Силы и моменты, действующие на судно в процессе управ­ления.

Все силы, действующие на судно по принятой в настоящее время классификации, разделяются на три группы: движущие, внешние и реактивные.

К движущим относят силы, создаваемые средствами управле­ния с целью придания судну требуемого линейного и углового движения. К таким силам относятся упор гребного винта, боковая сила руля, силы, создаваемые САУ, и т. п.

К внешним относятся силы давления ветра, волнения моря, и течения. Эти силы, обусловленные внешними источниками энергии, в большинстве случаев создают помехи при маневри­ровании.

К реактивным относятся силы и моменты, возникающие в результате движения судна под действием движущих и внеш­них сил. Реактивные силы зависят от линейных и угловых скоростей.

По своей природе реактивные силы и моменты разделяются на инерционные и неинерционные.

Инерционные силы и моменты обусловлены инертностью судна и присоединенных масс жидкости. Эти силы возникают только при наличии ускорений — линейного, углового, центростреми­тельного.

Инерционная сила всегда направлена в сторону, противополож­ную ускорению. При равномерном прямолинейном движении суд­на инерционные силы не возникают.

Неинерционные силы и их моменты обусловлены вязкостью за­бортной воды, следовательно, являются гидродинамическими си­лами и моментами. При рассмотрении задач управляемости обыч­но используется связанная с судном подвижная система координат с началом в ц. т. Положительное направление осей: X — в нос; Y — в сторону правого борта; Z — вниз. Положительный отсчет углов принимается по часовой стрел­ке, однако, с оговорками в отношении угла перекладки руля, угла дрейфа и курсового угла ветра.

За положительное направление перекладки руля принимают пе­рекладку, вызывающую циркуляцию по часовой стрелке, т. е. пе­рекладку на правый борт (перо руля при этом разворачивается против часовой стрелки).

За положительный угол дрейфа принимается такой, при кото­ром поток воды набегает со стороны левого борта и, следователь­но, создает положительную поперечную гидродинамическую силу на корпусе. Такой угол дрейфа возникает на правой циркуляции судна.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-12-28 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: