В физике существует ряд постоянных, которые, по современным данным, имеют одно и то же значение в любой точке наблюдаемой Вселенной, поэтому они получили название фундаментальных, или мировых, констант. Это название оправдано еще и тем, что их численные значения существенным образом влияют на структуру и строение окружающего мира. К таким постоянным относятся: постоянная всемирного тяготения, постоянная Планка, скорость света, масса протона, масса электрона, постоянная Хаббла (для нашей эпохи) и ряд др. Кстати, вопрос о полном наборе фундаментальных постоянных ученые всего мира обсуждают уже более 20 лет, но до сих пор не достигли согласия. Оказалось, что числовые значения этих констант не могут быть любыми или иметь широкий разброс значений, а существование разумной жизни делает их выбор почти однозначным. Для доказательства этого утверждения обратимся к данным, которые приводит доктор физико-математических наук И. Д. Новиков в книге «Как взорвалась Вселенная».
Начнем с микроструктуры. Известно, что простейший и наиболее распространенный атом во Вселенной – водород. Он достаточно стабилен, если его не подвергать внешним воздействиям. Но почему электрон не может вступить в реакцию с протоном, т. е. почему не происходит реакция р+е – n+v, удовлетворяющая всем законам сохранения и действительно наблюдаемая на ускорителях. Оказывается, сумма масс покоя протона и электрона меньше, чем масса нейтрона. Значит, чтобы эта реакция произошла, атому водорода надо сообщить дополнительную энергию извне. Нейтрон массивнее протона на delta m=1,3 МэВ, а масса электрона всего m e=0,5 МэВ (мы используем здесь энергетические единицы, принятые в физике высоких энергий). Значит, атом водорода будет стабилен, если сумма масс протона и электрона будет меньше массы нейтрона. Если бы масса электрона была другая, то, как показывают расчеты, атом водорода не мог бы «прожить» более 30 ч., т. е. во Вселенной не существовало бы главного ядерного горючего для звезд, а значит не было бы и обычных звезд, необходимых для возникновения и развития жизни. Изменения массы протона (938,28 МэВ) или нейтрона (939,57 МэВ) хотя бы на одну тысячную также должно привести к описанным выше катастрофическим последствиям. Но это ограничение снизу. Рассмотрим теперь ограничение сверху. Изотоп водорода – дейтерий, точнее его ядро, дейтон, состоит из нейтрона и протона. Удельная энергия связи их равна 2,2 МэВ. Почему в этом ядре нейтрон не распадается по той же схеме, как и нестабильный свободный нейтрон. Дело в том, что при распаде нейтрона энергия движения образовавшихся частиц возникает за счет разности масс нейтрона и протона. Если предположить, что энергия нейтрино мала, да еще надо затратить энергию на образование электрона, то для кинетической энергии разлета частиц остается всего 0,8 МэВ. Чтобы вылететь из ядра, частицам надо еще преодолеть энергию связи 2,2 МэВ. Поэтому дейтон и стабилен. Но почему это так важно? Образование дейтерия – первый шаг в цепочке ядерных превращений, ведущих от водорода к более тяжелым элементам, которых не было в ранней Вселенной. Ныне эти реакции идут в недрах звезд. Без дейтерия стали бы невозможны все известные пути образования элементов тяжелее водорода, не возник бы углерод, а значит и известная нам форма жизни. Из факта существования разумной жизни следует неравенство 0,5 МэВ< delta m<2,7 МэВ. Согласитесь, удивительно узкий интервал по сравнению с космическими перепадами параметров.
|
|
Теперь о постоянной сильного взаимодействия. Если бы она была несколько меньше, то сложные ядра были бы неустойчивы, а значит стали бы невозможными ни ядерные реакции в звездах, ни образование известных химических элементов. И как следствие – не возникла бы наша форма жизни. Обратимся теперь к макроструктуре. Из астрономии известно, что в звездах с массой порядка солнечной (и меньше) в верхних слоях существует конвективное перемешивание. В более массивных звездах этого нет. Анализ показывает: если бы значение постоянной тяготения О было больше, то звезды не имели бы конвективных слоев, а, следовательно, и планет, т. е. не возникла бы и жизнь. Расчеты показывают, что должно выполняться неравенство аg>а^12(m p / m e) - m p, m e массы протона и электрона где ag=(G*m p^2) / (h*c), (где G - гравитационная постоянная, h - постоянная планка, c - скорость света)– безразмерная величина, характеризующая гравитационное взаимодействие и названная постоянной «гравитационной тонкой структуры». Если бы гравитация (G) была чуть слабее, а электромагнетизм (е) чуть сильнее и электрон чуть массивнее, то все звезды были бы красными карликами. Наоборот, едва заметное отклонение в другую сторону – и все они были бы голубыми гигантами. Ни у тех, ни у других нет кон-вективных слоев со всеми вытекающими отсюда последствиями. Г. Гамов, П. Дирак, А. Эддингтон обратили внимание еще на одно числовое совпадение. Поделив время прохождения светом диаметра протона 10^ -24 секунды на гравитационную постоянную тонкой структуры аg, то получим: т=10^18 секунд или 30*10^9 лет. Этот промежуток времени, по порядку величины очень близкий к возрасту Вселенной. Простое это совпадение или здесь скрыт, как предполагал Дирак, еще не открытый фундаментальный физический принцип?
|
Обратимся, наконец, к самому очевидному свойству нашего мира – его трехмерности. Посмотрим, что произойдет, если размерность пространства будет иной. Рассмотрим два физических взаимодействия – электростатическое (описываемое законом Кулона) и гравитационное (описываемое законом всемирного тяготения Ньютона). В этих случаях сила обратно пропорциональна квадрату расстояния. Но уже И. Кант понял, что этот результат есть следствие трехмерности пространства. Почему электростатическая сила ослабевает с расстоянием r? Наглядно ответ можно получить так – с ростом г силовые линии поля, создаваемого неподвижным зарядом, распределяются по все большей поверхности сферы, охватывающей заряд и имеющей радиус r. Площадь сферы растет как r, значит, плотность силовых линий, пронизывающих сферу, уменьшается как 1 / r^2. Сказанное справедливо для трехмерного пространства. Если же пространство четырехмерно, то площадь четырехмерной сферы пропорциональна r^3, а для пространства n измерений площадь пропорциональна r^n-1. Значит, в этих пространствах закон изменения электростатической и гравитационных сил будет F=1/r^n-1 Теперь рассмотрим движение (например, электрона вокруг протона или планеты вокруг центральной звезды). Из аналитической механики известно, что для существования устойчивых круговых орбит необходимо, чтобы центробежные силы уменьшались с расстоянием быстрее, чем сила притяжения F. Иначе движение по кругу будет неустойчивым и любое малое возмущение приведет к тому, что заряд либо «упадет» в центр, либо улетит в бесконечность. Но отсутствие устойчивых орбит означает невозможность существования ни атомов, ни планетных систем. Значит, для их существования необходимая размерность пространства должна быть n < или = З.
Антропный принцип
Итак, было приведено достаточно научных аргументов, свидетельствующих о том, что если исходить из очевидного факта наличия разумной жизни, то мы должны признать необходимость наложения вполне определенных ограничений на фундаментальные свойства Вселенной, в которой эта жизнь обитает. По существу такое заключение и есть антропный принцип. В зависимости от того, как далеко во времени существования Вселенной и в ее пространственных масштабах распространяются эти ограничения, различают слабый и сильный антропный принцип.
Б. Картер сформулировал слабый антропный принцип так: «То, что мы предполагаем наблюдать, должно удовлетворять условиям, необходимым для присутствия человека в качестве наблюдателя». Известный советский космолог А. Л. Зельманов дает сходную формулировку: «Мы являемся свидетелями данных процессов потому, что другие процессы протекают без свидетелей». Таким образом, влияние слабого антропного принципа распространяется только на тот отрезок эволюции Вселенной, когда в ней возникла разумная жизнь и требуется, чтобы именно в эту эпоху Вселенная удовлетворяла тем жестким условиям, которые были указаны выше.
Но обладает ли в этом случае сформулированный принцип какой-либо эвристической силой и не является ли он простой констатацией факта? Прежде всего заметим, что сложные формы движения материи (сложные химические соединения, необходимые для разумной жизни) могли возникнуть во Вселенной только на определенном этапе ее эволюции. Таких условий не было в далеком прошлом Вселенной, когда не было еще ни звезд, ни планет. По-видимому, большие трудности для зарождения жизни (а тем более, разума) возникнут и в далеком будущем, когда погаснут звезды, а тем. более позже, когда начнут распадаться тяжелые частицы, превращаясь в фотоны и нейтрино.
Итак, мы приходим к выводу: разумная жизнь может возникнуть во Вселенной во вполне определенный период – в эпоху, когда есть для этого условия. Следуя И. Д. Новикову, можно сказать, что Вселенная может «порождать наблюдателей» («свидетелей») только в нашу эпоху. Этот вывод позволяет объяснить совпадение времен, подмеченное Дираком. Можно показать, что промежуток времени 10^10 по порядку величины равен продолжительности жизни средней звезды, и возраст Вселенной примерно равен возрасту звезд. Когда возраст Вселенной намного превзойдет возраст звезд и они потухнут, зарождение и развитие жизни вплоть до разумной, станет уже невозможным. С другой стороны, тот же процесс невозможен и в заметно более раннюю эпоху, ибо для этого необходимо появление звезд и их длительное стабильное излучение. Еще один вывод слабого антропного принципа: наблюдатели могут появиться только при определенном наборе физических констант (включая и размерность пространства), при определенных физических законах. Если и были (и, возможно, есть?) вселенные с иными законами, в них никогда не возникнет разумная жизнь. В этом смысле, наша Вселенная такая, какой мы ее видим именно потому, что в ней есть мы.
Последний вывод допускает довольно-таки глобальное обобщение, которое названо сильным антропным принципом. Б. Картер сформулировал его так: «Вселенная должна быть такой, чтобы в ней на некоторой стадии эволюции мог существовать наблюдатель». Этот принцип накладывает ограничения уже на все врем я существования Вселенной и всю ее структуру. Он утверждает, что Вселенная должна быть приспособлена для возникновения и развития жизни, и как законы физики, так и начальные условия подстраиваются так, чтобы обеспечить эволюцию жизни вплоть до ее разумной формы. В этом отношении сильный антропный принцип сродни религиозному объяснению мира: Бог сотворил мир, чтобы люди населяли его. Очевидно, что в этом случае слабый антропный принцип есть лишь частный случай сильного.
С физической и философской точек зрения представляется странным, что только существование разумной жизни должно объяснить структуру Вселенной. Сложившиеся физические условия могли бы привести к появлению человека, но вряд ли можно приписать разумной жизни возможность формулировать требования, обязательные для всей окружающей материи в любые временные эпохи. В середине 80-х гг. А. Линде и А. Ста-робинский предложили такую модель возникновения Вселенной, которая предполагает, что природа действительно «пыталась и пытается создавать» бесконечное число вселенных с разной физикой, т. е. с разными наборами фундаментальных констант, с разной размерностью пространства и т. д. И тогда мы – наблюдатели – появились только в редчайшей из этих вселенных, нашей Вселенной, которая удовлетворяет всем требованиям, необходимым для возникновения и развития жизни вплоть до разумной формы, т. е. в том мире, который подчиняется сильному антропному принципу.
ЗАКЛЮЧЕНИЕ
Современная наука установила, что для развития разумной жизни требуются очень специфические условия, накладывающие довольно жесткие ограничения на свойства Вселенной. И что интересно, наша Вселенная оказалась необычно точно удовлетворяющей всем требованиям, правда, и очень чувствительной к незначительному изменению каждой из фундаментальных констант, ответственных за ее свойства, причем любое это изменение практически делает невозможным существование разумной жизни. Для объяснения этой удивительно точной настройки был выдвинут антропный принцип, связывающий фундаментальное строение Вселенной с фактом существования в ней разумной жизни. Этот принцип позволяет понять весьма специфические свойства наблюдаемой Вселенной: чрезвычайную однородность в большом масштабе, но все-таки не такую, чтобы не могли образоваться галактики; достаточно низкую температуру, необходимую для химических реакций; значение постоянных, характеризующих четыре известных нам типа взаимодействий, позволяющих существовать ядрам, но не позволяющих выгорать всему космическому водороду и др.
Но в своей сильной форме антропный принцип приводит к заключениям, которые справедливо критикуются как физиками, так и философами. Однако дальнейшее развитие науки позволит построить такую физическую модель Вселенной, в которой антропный принцип получит свое материалистическое толкование и займет вполне естественное место. Но пока это остается только теоретической схемой, требующей дальнейшей разработки и практического подтверждения. Поэтому история антропного принципа еще далека от окончательного завершения.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1. В. М. ЧАРУГИН, О. Е.БАКСАЙСКИЙ Место человека во Вселенной // Земля и Вселенная. – 2001. – N 6. С. 73-78.
2. Философия: курс лекций. – 2-е изд., перераб. и дополн. –М.: Центр, 2001. 272с.
3. https://alt-future.narod.ru/Seti/charug.htm
4. https://www.leq.ru/Soc/Nepoznal/Chelovek-i-Vselennaja