САМОРЕГУЛЯЦИЯ ДЕЯТЕЛЬНОСТИ СЕРДЦА: КЛЕТОЧНЫЕ, ВНУТРИСЕРДЕЧНЫЕ И ВНЕСЕРДЕЧНЫЕ МЕХАНИЗМЫ, ХАРАКТЕРИСТИКА ОСНОВНЫХ РЕГУЛЯТОРНЫХ ВЛИЯНИЙ.




МЕХАНИЗМЫРЕГУЛЯЦИИ ДЕЯТЕЛЬНОСТИ СЕРДЦА Подразделяются на: внутриклеточные, внутрисердечные, внесердечные.

Внутриклеточные механизмы регуляции.

1. Миокард состоит из отдельных клеток, соединённых вставочными дисками. В каждой клетке – механизм регуляции синтеза белков, поддерживающий уровень воспроизводства в соответствии с интенсивностью раздражения. При увеличении нагрузки на сердце (регулярная мышечная деятельность) усиливается синтез сократительных белков миокарда и структур, обеспечивающих их деятельность (рабочая гипертрофия миокарда).

2. Гетерометрическая регуляция. Сила сокращения сердца пропорциональна степени его кровенаполнения в диастолу (степени растяжения), т.е. исходной длине его мышечных волокон («закон сердца» Франка-Старлинга). При растяжении миокарда во время диастолы в каждой миофибрилле актиновые нити в большей степени выдвигаются из промежутков между миозиновыми нитями, при этом увеличивается количество резервных мостиков – тех актиновых точек, которые соединяют актиновые и миозиновые нити в момент сокращения. Чем больше растянута каждая клетка миокарда во время диастолы, тем больше она сможет укоротиться. В результате сердце перекачивает в артерии то количество крови, которое притекает из вен.

3. Гомеометрическая регуляция – изменение силы сокращений сердца при неменяющейся исходной длине волокон миокарда. Это ритмозависимые изменения силы сокращения. Если стимулировать полоску миокарда при равном растяжении с увеличивающейся частотой, то наблюдается увеличение силы каждого последующего сокращения («лестница Боудича»). Это связано с повышением внутри миокардиоцита свободного кальция. В момент генерации ПД Са2+ через медленные Na+-Ca2+-каналы входит внутрь миокардиоцита. Са2+ - взаимодействует с тропонином и инициирует этим изменение положения тропомиозина на актиновой нити, с которой миозиновые мостики способны вступить в контакт, т.е. инициирует сокращение. Чем больше ионов Са2+, тем больше число взаимодействующих мостиков, тем выше сила сокращения.

Резкое увеличение сопротивления выбросу крови из левого желудочка в аорту приводит к увеличению в определённых границах силы сокращений миокарда (проба Анрепа). Механизм имеет 2 фазы: 1) – при увеличении сопротивления растёт конечный диастолический объём и увеличение силы реализуется по гетерометрическому механизму; 2) – когда конечный диастолический объём стабилизируется, увеличенная сила сокращений поддерживается гомеометрическим механизмом.

Внутрисердечные механизмы регуляции.

Обеспечиваются внутрисердечными периферическими рефлексами. Дуга этих рефлексов замыкается не в ЦНС, а в интрамуральных ганглиях миокарда. В этих ганглиях выделено 3 типа нервных клеток:

1) с короткими дендритами и аксоном, образующим окончание на волокнах миокарда – типичные эфферентные нейроны;

2) с длинными дендритами и длинным аксоном, выходящим за пределы ганглия и заканчивающимся на нейронах в других ганглиях – афферентные нейроны. Дендриты афферентного нейрона образуют рецепторы растяжения на волокнах миокарда и венечных (коронарных) сосудах;

3) с короткими отростками, не выходящими за пределы ганглия – вставочные нейроны.

Гетеро- и гомеометрические внутриклеточные механизмы способны лишь увеличивать энергию сердечного выброса. Внутрисердечные рефлексы обеспечивают более сложный уровень регуляции, соответствующий текущим условиям в системе кровообращения.

На фоне низкого кровенаполнения сердца и незначительной величины давления крови в устье аорты и коронарных сосудах, увеличение растяжения миокарда правого предсердия приводит к рефлекторному усилению сокращения миокарда левого желудочка.

Переполнение камер сердца кровью вызывает снижение силы сокращения миокарда посредством внутрисердечных рефлексов. Сердце выбрасывает меньшее количество крови. Задержка дополнительного количества крови в полостях сердца снижает диастолическое давление и вызывает снижение притока венозной крови к сердцу. Излишний объём задерживается в венозной системе.

При недостаточности наполнения кровью камер сердца внутрисердечные рефлексы вызывают усиление сокращений миокарда. Желудочки выбрасывают большее количество крови, что способствует усилению притока венозной крови к сердцу.

В нормальных естественных условиях внутрисердечная система нервной регуляции не является автономной. Это – низшее звено иерархии нервных механизмов, регулирующих деятельность сердца.

Внесердечные регуляторные механизмы – это нервная экстракардиальная регуляция. Осуществляется импульсами, поступающими из ЦНС по волокнам блуждающего и симпатических нервов. Парасимпатические волокна: тела 1-х нейронов, отростки которых составляют блуждающие нервы, располагаются в продолговатом мозге. Заканчиваются в интрамуральных ганглиях сердца. Здесь находятся 2-е нейроны, отростки которых идут к проводящей системе, миокарду и коронарным сосудам.

Симпатические волокна: 1-е нейроны в боковых рогах 5-ти верхних сегментов грудного отдела спинного мозга. Отростки заканчиваются в шейных и верхних грудных симпатических узлах. В этих узлах – 2-е нейроны, отростки которых идут к сердцу. Большая часть отходит к сердцу от звёздчатого узла.

Раздражение блуждающих нервов, идущих к сердцу, тормозит работу сердца вплоть до полной его остановки в диастолу. Первый случай обнаружения в организме тормозящего влияния нервов.

При электрическом раздражении перерезанного блуждающего нерва происходит: урежение ЧСС – отрицательный хронотропный эффект; уменьшение амплитуды сокращений – отрицательный инотропный эффект.

При сильном раздражении работа сердца на некоторое время прекращается. В этот период возбудимость сердца понижена – отрицательный батмотропный эффект; проведение возбуждения замедлено – отрицательный дромотропный эффект. Нередко наблюдается полная блокада проведения возбуждения в предсердно-желудочковом узле.

При продолжительном раздражении блуждающего нерва сокращения сердца восстанавливаются – «ускользание сердца из-под влияния блуждающего нерва».

 

Медиатор ацетилхолин, образующийся в окончаниях блуждающего нерва, быстро разрушается ацетилхолинэстеразой и, поэтому, оказывает только местное действие. Норадреналин, выделяющийся в окончаниях симпатических нервов, разрушается значительно медленнее и действует дольше. После прекращения раздражения симпатического нерва в течение некоторого времени сохраняются учащение и усиление сердечных сокращений. Наряду с основным медиатором в синаптическую щель могут выделяться вещества, обладающие модулирующим действием.

Нервная экстракардиальная регуляция оказывает корригирующее влияние на ритм и работу сердца. Сам ритм зарождается в пейсмекере 1-го порядка, а нервные влияния ускоряют или замедляют скорость спонтанной деполяризации клеток водителей ритма, изменяя режимы работы сердца. По мнению И.П.Павлова имеет место и трофическая стимуляция процессов обмена веществ.

Наряду с внутрисердечным, существует и центральный генератор ритма сердца. В естественных условиях он формирует адаптивные (приспособительные) реакции сердца, навязывая сердцу ритм сигналов, приходящих по блуждающим нервам. Внутрисердечный генератор обеспечивает поддержание насосной функции сердца в случае выключения центрального генератора.

Центры блуждающего и симпатических нервов – это 2-я (после внутрисердечных) ступень в иерархии нервных центров, регулирующих работу сердца. Они интегрируют влияние, нисходящее из высших отделов головного мозга.

Более высокая ступень иерархии – центры гипоталамуса. При электрическом раздражении гипоталамуса наблюдаются реакции сердечнососудистой системы, которые по выраженности превосходят реакции, возникающие в естественных условиях. При локальном точечном раздражении некоторых зон гипоталамуса наблюдались: изменения ритма, силы сокращения левого желудочка, степени расслабления левого желудочка и т.д. Т.е. в гипоталамусе имеются структуры, способные регулировать отдельные функции сердца. Но в естественных условиях эти структуры не работают изолированно. Гипоталамус – исполнительный орган. Он обеспечивает интегративную перестройку функций сердечнососудистой системы (и других систем) по сигналам, поступающим из лимбической системы или новой коры.

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: