Статистическое дискретное распределение. Полигон.




Тема: Выборочный метод.

Генеральная совокупность и выборка

Всякое каким-то образом выделенное множество объектов, которые могут отличаться друг от друга значением некоторой определенной характеристики, называется генеральной совокупностью.

Число элементов генеральной совокупности называется ее объемом.

Часть генеральной совокупности, случайным образом отобранная для наблюдений, называется случайной выборкой или, для краткости, выборкой.

Число элементов выборки называется ее объемом.

Так, если из ста тысяч упаковок некоторого лекарства (генеральная совокупность) для контроля качества отобрано сто упаковок (выборка), то объем генеральной совокупности составляет 100000, а объем выборки – 100.

Свойства выборочной совокупности тем лучше отражают соответствующие свойства генеральной совокупности, чем больше объектов содержит эта выборочная совокупность(т.е. чем больше ее объем). Например, если интересует концентрация некоторого вещества в таблетках, выпускаемых при помощи аппарата определенной конструкции, то чем больше случайным образом отобранных таблеток мы исследуем, тем более достоверную информацию получим.

Поскольку мы рассчитываем с помощью статистических методов высказать определенное суждение о свойствах генеральной совокупности по свойствам выборки, то последняя должна быть репрезентативной (представительной), т.е. должна быть организована таким образом, чтобы, по возможности, отражать все интересующие нас свойства генеральной совокупности.

Например, при обследовании на предмет успеваемости по физиологии студентов медицинских университетов А, В и С, в которых обучаются 500, 200 и 300 студентов соответственно, выборку объемом 100 следует строить так, чтобы в нее входило 50 случайным образом выбранных студентов университета А, 20 студентов университета В и 30 студентов университета С. Пропорции в выборке должны соответствовать пропорциям генеральной совокупности.

Для обеспечения репрезентативности выборка должна быть достаточно объемной с тем, чтобы охватывать всю генеральную совокупность, и производиться беспристрастно по отношению к отдельным ее частям.

Повторной называют выборку, при которой отобранный объект (перед отбором следующего) возвращается в генеральную совокупность.

Бесповторной называют выборку, при которой отобранный объект в генеральную совокупность не возвращается.

На практике обычно пользуются бесповторным случайным отбором.

На практике применяются различные способы отбора. Принудительно эти способы можно подразделить на два вида:

I. Отбор, не требующий расчленения генеральной совокупности на части, сюда относятся:

а) простой случайный бесповторный отбор;

б) простой случайный повторный отбор.

II. Отбор, при котором генеральная совокупность разбивается на части, сюда относятся:

а) типический отбор;

б) механический отбор;

в) серийный отбор.

Простым случайным называют такой отбор, при котором объекты извлекают по одному из всей генеральной совокупности. Если извлеченные карточки не возвращать в пачку, то выборка будет простой случайной бесповторной.

Типическим называют отбор, при котором объекты отбираются не из всей генеральной совокупности, а из каждой ее «типической» части.

Механическим называют отбор, при котором генеральная совокупность «механически» делится на столько групп, сколько объектов должно войти в выборку, и из каждой группы отбирается один объект.

Серийным называют отбор, при котором объекты отбирают из генеральной совокупности не по одному, а «сериями», которые подвергаются сплошному обследованию.

Статистическое распределение выборки

 

При систематизации данных выборочных обследований используются статистические дискретные и интервальные ряды распределения.

Статистическое дискретное распределение. Полигон.

Пусть из генеральной совокупности извлечена выборка, причем х 1 наблюдалось п 1 раз, х 2п 2 раз, хкпк раз и - объем выборки. Наблюдаемые значения х 1 называют вариантами, а последовательность вариант, записанных в возрастающем порядке – вариационным рядом.

Число наблюдений варианты называют частотой, а ее отношение к объему выборки - относительной частотой .

Определение. Статистическим (эмпирическим) законом распределения выборки, или просто статистическим распределением выборки называют последовательность вариант и соответствующих им частот пi или относительных частот .

Статистическое распределение выборки удобно представлять в форме таблицы распределения частот, называемой статистическим дискретным рядом распределения:

`

х1 х2
п1 п2

(сумма всех частот равна объему выборки )

или в виде таблицы распределения относительных частот:

х1 х2
w1 w2

(сумма всех относительных частот равна единице ).

Пример 1. При измерениях в однородных группах обследуемых получены следующие выборки: 71, 72, 74, 70, 70, 72, 71, 74, 71, 72, 71, 73, 72, 72, 72, 74, 72, 73, 72,74 (частота пульса). Составить по этим результатам статистический ряд распределения частот и относительных частот.

Решение. 1) Статистический ряд распределения частот:

хi          
пi          

2) Объем выборки: п =2+4+8+2+4=20. Найдем относительные частоты, для чего разделим частоты на объем выборки :

;

Напишем распределение относительных частот:

хi          
wi 0,1 0,2 0,4 0,1 0,2

 

Контроль: 0,1+0,2+0,4+0,1+0,2=1.

 

Полигоном частот называют ломаную, отрезки, которой соединяют точки Для построения полигона частот на оси абсцисс откладывают варианты х 2, а на оси ординат – соответствующие им частоты пi. Точки соединяют отрезками и получают полигон частот.

Полигоном относительных частот называют ломаную, отрезки, которой соединяют точки . Для построения полигона относительных частот на оси абсцисс откладывают варианты х i, а на оси ординат соответствующие им частоты w i. Точки соединяют отрезками и получают полигон относительных частот

 

Пример 2. Постройте полигон частот и полигон относительных частот по данным примера 1.

Решение: Используя дискретный статистический ряд распределения, составленный в примере 1 построим полигон частот и полигон относительных частот:

 
 

 

2. Статистический интервальный ряд распределения. Гистограмма. Статистическим дискретным рядом (или эмпирической функцией распределения) обычно пользуются в том случае, когда отличных друг от друга вариант в выборке не слишком много, или тогда, когда дискретность по тем или иным причинам существенна для исследователя. Если же интересующий нас признак генеральной совокупности Х распределен непрерывно или его дискретность нецелесообразно (или невозможно) учитывать, то варианты группируются в интервалы.

Статистическое распределение можно задать также в виде последовательности интервалов и соответствующих им частот (в качестве частоты, соответствующей интервалу, принимают сумму частот, попавших в этот интервал).

1. R(размах) =Xmax –Xmin

2. k- число групп

3. (формула Стерджеса)

4. a=xmin, b=xmax

5.

Полученную группировку удобно представить в форме частотной таблицы, которая носит название статистический интервальный ряд распределения:

Интервалы группировки ...
Частоты ...

Аналогическую таблицу можно образовать, заменяя частоты ni относительными частотами:



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-15 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: