Методика оценки вероятности отказов и вероятности безотказной системы




 

Существует много методик анализа надежности, специфических для отдельных отраслей промышленности и приложений. Наиболее общие из них следующие.

¾ Анализ видов и последствий отказов (АВПО)

¾ Имитационное моделирование надежности

¾ Анализ схем функциональной целостности (СФЦ)

¾ Анализ опасностей (Hazard analysis)

¾ Анализ структурных схем надежности (RBD)

¾ Анализ деревьев неисправностей

¾ Ускоренные испытания

¾ Модели ускорения жизни

¾ Модели деградации

¾ Анализ роста надежности

¾ Вейбулл-анализ (анализ эмпирических данных испытаний и эксплуатации)

¾ Анализ смеси распределений

¾ Устранение критичных отказов

¾ Анализ ремонтопригодности, ориентированной на безотказность

¾ Анализ диагностики отказов

¾ Анализ ошибок человека-оператора

Инженерные исследования проводятся для определения оптимального баланса между надежностью и другими требованиями и ограничениями. Существенную помощь при инженерном анализе надежности могут оказать программные комплексы для расчета надежности.

Теория надежности является основой инженерной практики в области надежности технических изделий. Часто безотказность определяют как вероятность того, что изделие будет выполнять свои функции на определенном периоде времени при заданных условиях. Математически это можно записать следующим образом:

 

R (t) = Pr {T>t} = ∫f (x) dx (2)

 

где - функция плотности времени наработки до отказа, а - продолжительность периода времени функционирования изделия, в предположении, что изделие начинает работать в момент времени .

Теория надежности предполагает следующие четыре основных допущения:

¾ Отказ рассматривается как случайное событие. Причины отказов, соотношения между отказами (за исключением того, что вероятность отказа есть функция времени) задаются функцией распределения. Инженерный подход к надежности рассматривает вероятность безотказной работы как оценку на определенном статистическом доверительном уровне.

¾ Надежность системы тесно связана с понятием «заданная функция системы». В основном, рассматривается режим работы без отказов. Однако, если в отдельных частях системы нет отказов, но система в целом не выполняет заданных функций, то это относится к техническим требованиям к системе, а не к показателям надежности.

¾ Надежность системы может рассматриваться на определенном отрезке времени. На практике это означает, что система имеет шанс (вероятность) функционировать это время без отказов. Характеристики (показатели) надежности гарантируют, что компоненты и материалы будут соответствовать требованиям на заданном отрезке времени. Поэтому иногда надежность в широком смысле слова означает свойство «гарантоспособности». В общем случае надежность относится к понятию «наработка», которое в зависимости от назначения системы и условий ее применения определяет продолжительность или объем работы. Наработка может быть как непрерывной величиной (продолжительность работы в часах, километраж пробега в милях или километрах и т.п.), так и целочисленной величиной (число рабочих циклов, запусков, выстрелов оружия и т.п.).

¾ Согласно определению, надежность рассматривается относительно заданных режимов и условий применения. Это ограничение необходимо, так как невозможно создать систему, которая способна работать в любых условиях. Внешние условия функционирования системы должны быть известны на этапе проектирования. Например, Марсоход создавался совершенно для других условий эксплуатации, чем семейный автомобиль.

Для достижения необходимой надежности могут быть использованы различные методы и средства. Каждая система предполагает свой уровень допустимой надежности, так как последствия отказов различных систем могут значительно различаться. Так, надежность точилки для карандашей может превышать надежность пассажирского самолета, однако последствия и стоимость их отказов сложно сравнить.

Программа обеспечения надежности (ПОН) является документом, который определяет организационно-технические требования и мероприятия (задачи, методы, средства анализа и испытаний), направленные на обеспечение заданных требований к надежности, а также уточняет требования заказчика по определению и контролю надежности. Определение надежности (reliability assessment) заключается в определении численных значений показателей надежности изделия. Контроль надежности (reliability verification) состоит в проверке соответствия изделия заданным требованиям по надежности [ГОСТ 27.002-89]. Различают расчетный, расчетно-экспериментальный и экспериментальный методы определения и контроля надежности.

В расчетном методе определения надежности расчет надежности основан на использовании показателей надежности по справочным данным о надежности элементов, по данным о надежности изделий-аналогов и другой информации, имеющейся к моменту оценки надежности. Расчетно-экспериментальный метод определения надежности (Analytical-experimental reliability assessment) основан на процедуре определения показателей надежности элементов экспериментальным методом, а показателей надежности системы в целом - с использованием математической модели. Экспериментальный метод определения надежности (Experimental reliability assessment) основан на статистической обработке данных, получаемых при испытаниях или эксплуатации системы или ее составных частей и элементов.

ПОН разрабатывается на ранних стадиях проектирования и реализуется на всех этапах жизненного цикла изделия. В техническом плане основным объектом ПОН является оценивание и достижение готовности и стоимости эксплуатации (затраты на запасные части, техническое обслуживание и ремонт, транспортные услуги и т.п.). Зачастую требуется нахождение компромисса между высокой готовностью и затратами, или, например, поиск максимального отношения «готовность / стоимость». В ПОН рассматриваются порядок и условия проведения испытаний на надежность, критерии их завершения и принятия решений по результатам испытаний.

Для любой системы одной из первых инженерных задач надежности является адекватное нормирование показателей надежности, например, в терминах требуемой готовности. Нормирование надежности - это установление в проектной или иной документации количественных и качественных требований к надежности. Требования по надежности относятся как к самой системе и ее составным частям, так и к планам испытаний, к точности и достоверности исходных данных, формулированию критериев отказов, повреждений и предельных состояний, к методам контроля надежности на всех этапах жизненного цикла изделия. Например, требования по ремонтопригодности могут включать в себя показатели стоимости и времени восстановления. Оценивание эффективности процессов технического обслуживания и ремонта является частью процесса FRACAS (failure reporting, analysis and corrective action system - система отчетов об отказах, анализа и коррекции действий).

При анализе параметров системной надежности учитывается структура системы, состав и взаимодействие входящих в нее элементов, возможность перестройки структуры и алгоритмов ее функционирования при отказах отдельных элементов.

Наиболее часто в инженерной практике рассматривают последовательное, параллельное, смешанной (последовательно - параллельное и параллельно-последовательное) соединение элементов, а также схемы типа «K из N», мостиковые соединения.

По возможности восстановления и обслуживания системы подразделяются на восстанавливаемые и невосстанавливаемые, обслуживаемые и необслуживаемые. По режиму применения (функционирования) - на системы непрерывного, многократного (циклического) и однократного применения.

В основном, в качестве параметра надежности используется среднее время до отказа (MTTF), которое может быть определено через интенсивность отказов или через число отказов на заданном отрезке времени. Интенсивность отказов математически определяется как условная плотность вероятности возникновения отказа изделия при условии, что до рассматриваемого момента времени отказ не произошел. При увеличении интенсивности отказов среднее время до отказа уменьшается, надежность изделия падает. Обычно среднее время до отказа измеряется в часах, но также может выражаться в таких единицах, как циклы и мили.

В других случаях надежность может выражаться через вероятность выполнения задачи. Например, надежность полетов гражданской авиации может быть безразмерной, или иметь размерность в процентах, как это делается в практике системной безопасности. В отдельных случаях успешным результатом системы может являться единоразовое срабатывание. Это актуально для систем, которые рассчитаны на срабатывание всего 1 раз: например, подушки безопасности в автомобиле. В этом случае задается вероятность срабатывания или, как, например, для ракет, вероятность попадания в цель. Для таких систем мерой надежности является вероятность срабатывания. Для восстанавливаемых систем может задаваться такой параметр, как среднее время восстановления (ремонта) и время проверки (тестирования). Часто параметры надежности задаются в виде соответствующих статистических доверительных интервалов.

Моделирование надежности - это процесс прогнозирования или исследования надежности компонент или системы до ее ввода в эксплуатацию. Наиболее часто для моделирования надежности систем используются методы анализа деревьев неисправностей и структурных схем надежности. Входные параметры для моделирования надежности систем могут быть получены из разных источников, то есть из справочников, отчетов об испытаниях и эксплуатации и т.п. В любом случае, данные должны быть использованы с большой осторожностью, так как прогнозы верны только тогда, когда данные получены при тех же условиях, при которых компоненты будут применяться в системе.

Часть данных о прогнозировании может быть получена по результатам исследований двух основных видов:

· анализа физики отказов, при котором исследуются механизмы возникновения отказов, например, механизм усталостного разрушения или деградации от химической коррозии;

· анализа результатов стресс-испытаний, эмпирического метода, при котором подсчитывается число компонентов системы, отказавших при разных уровнях внешнего воздействия.

Для систем, в которых точно можно определить время отказа (что не дано для систем с плавающими параметрами), может быть определена эмпирическая функция распределения времени отказа. Это делается чаще всего при проведении испытаний с повышенным уровнем стресса (ускоренные испытания). Эти испытания делятся на две основные категории:

¾ определение распределения отказов ранней стадии эксплуатации при наблюдении снижающейся интенсивности отказов, что является первой частью ваннообразной кривой интенсивности отказов. Здесь обычно используют умеренный уровень нагрузок. Они прикладываются на ограниченном отрезке времени, который называют временем цензурирования. Именно поэтому здесь определяется только часть функции распределения.

¾ безотказовые наблюдения (нулевые эксперименты), которые дают возможность получить лишь ограниченную информацию о распределении отказов. В этом случае испытания проводятся на коротком отрезке времени на малой по объему выборке, что позволяет получить только верхнюю границу оценки интенсивности отказов. Во всяком случае, это удобно для заказчика.

Для исследования средней части распределения, которая чаще всего определяется свойствами материалов, необходимо применять повышенные нагрузки на достаточно малом отрезке времени. В таких видах ускоренных испытаний применяются несколько степеней нагрузки. Часто эмпирическое распределение этих отказов параметризируется законом Вейбулла или лог-нормальным распределением.

Общей практикой моделирования «ранней» интенсивности отказов является использование экспоненциального распределения. Это менее сложная модель для распределения времени отказа, содержащая только один параметр - постоянную интенсивность отказов. В этом случае в качестве критерия согласия может быть использован критерий хи-квадрат для оценки постоянства интенсивности отказов. По сравнению с уменьшающейся интенсивностью отказов это довольно пессимистическая модель и требует проведения анализа чувствительности.

Надежность на этапе проектирования является новой дисциплиной и относится к процессу разработки надежных изделий. Этот процесс включает в себя несколько инструментов и практических рекомендаций и описывает порядок их применения, которыми должна владеть организация для обеспечения высокой надежности и ремонтопригодности разрабатываемого продукта с целью достижения высоких показателей готовности, снижения затрат и максимального срока службы продукта. Как правило, первым шагом в этом направлении является нормирование показателей надежности. Надежность должна быть «спроектирована» в системе. При проектировании системы назначаются требования к надежности верхнего уровня, затем они разделяются на определенные подсистемы разработчиками, конструкторами и инженерами по надежности, работающими вместе. Проектирование надежности начинается с разработки модели. При этом используют структурные схемы надежности или деревья неисправностей, при помощи которых представляется взаимоотношение между различными частями (компонентами) системы.

Одной из наиболее важных технологий проектирования является введение избыточности или резервирование. Резервирование - это способ обеспечения надежности изделия за счет дополнительных средств и (или) возможностей, избыточных по отношению к минимально необходимым для выполнения требуемых функций (ГОСТ 27.002). Путем введения избыточности совместно с хорошо организованным мониторингом отказов, даже системы с низкой надежностью по одному каналу могут в целом обладать высоким уровнем надежности. Однако введение избыточности на высоком уровне в сложной системе (например, на уровне двигателя самолета) очень сложно и дорого, что ограничивает такое резервирование. На более низком уровне системы резервирование реализуется быстро и просто, например, использование дополнительного соединения болтом.

Испытания на надёжность проводятся для того, чтобы на более ранних этапах жизненного цикла изделия обнаружить потенциальные проблемы, обеспечить уверенность, что система будет отвечать заданным требованиям.

Испытания на надежность могут проводиться на разных уровнях. Сложные системы могут испытываться на уровне компонент, устройств, подсистем и всей системы в целом. Например, испытания компонент на воздействие внешних факторов может выявить проблемы перед тем, как они будут обнаружены на более высоком уровне интеграции. Проведение испытаний на каждом уровне интеграции до испытания всей системы с одновременным развитием программы испытаний позволяет снизить риск неудачи такой программы. Расчет надежности производится на каждом уровне испытаний. При этом часто используются такие методы, как анализ роста надежности и системы отчета и анализа отказов и корректирующих действий (FRACAS). Недостатками таких испытаний являются время и затраты. Заказчики могут пойти на некоторый риск и отказаться от испытаний на более низких уровнях.

Некоторые системы принципиально не могут подвергаться испытаниям, например, из-за чрезмерно большого числа различных тестов или жестких ограничений по времени и затратам. В таких случаях могут быть использованы ускоренные испытания, методы планирования экспериментов и моделирование.

Отметим, что сегодня все чаще и чаще применяются так называемые ускоренные испытания в динамически меняющейся среде для оценивания качества и надежности высококачественной и высоконадежной продукции, в том числе и структурно-сложных систем с учетом их старения, усталости, износа и деградации в ходе их эксплуатации. Для этого за последние двадцать лет в статистике ускоренных испытаний разработаны специальные модели ускорения жизни (см., например, Nelson (1990), Meeker and Escobar (1998), Singpurvalla (1995)), которые хорошо адаптированы для статистического анализа данных об отказах, наблюдаемых как при меняющихся во времени стрессах (нагрузках, ковариантах), так и при наличии деградационных процессов, которые также могут зависеть от этих стрессов.

Надежность в инженерной практике отличается от безопасности отношением к видам опасностей, с которыми она имеет дело. Надежность в технике главным образом связана с определением стоимостных показателей. Они относятся к тем опасностям в смысле надежности, которые могут перерасти в аварии с частичной потерей доходов для компании или заказчика. Это может произойти из-за потери по причине неготовности системы, неожиданно высоких затрат на запасные части и ремонт, перерывов в нормальной работе и т.п. Безопасность относится к тем случаям проявления опасности, которые могут привести к потенциально тяжелым авариям. Требования по безопасности функционально связаны с требованиями по надежности, но характеризуются более высокой ответственностью. Безопасность имеет дело с нежелательными опасными событиями для жизни людей и окружающей среды в том же смысле, что и надежность, но не связана напрямую со стоимостными показателями и не относится к действиям по восстановлению после отказов и аварий. У безопасности другой уровень важности отказов в обществе и контроля со стороны государства. Безопасность часто контролируется государством (например, атомная промышленность, космос, оборона, железные дороги и нефтегазовый сектор).

Надежность может быть увеличена при использовании резервирования «2 из 2» на уровне компонент или системы, но это может привести к снижению безопасности за счет увеличения вероятности ложной тревоги (например, ложное срабатывание тормозной системы поезда). Отказоустойчивые мажоритарные системы (логика голосования «2 из 3») может увеличить как надежность, так и безопасность на системном уровне. Такие методы являются общей практикой в аэрокосмических системах, в которых требуется постоянная готовность и недопустимость опасных отказов.

После того, как система изготовлена, осуществляется мониторинг ее надежности, оцениваются и корректируются недоработки и недостатки. Мониторинг включает в себя электронное и визуальное наблюдение за критическими параметрами, выявленными на стадии проектирования при разработке дерева неисправностей. Для обеспечения заданной надежности системы данные постоянно анализируются, используя статистические методы, такие как Вейбулл-анализ и линейная регрессия. Данные о надежности и оценки параметров являются ключевыми входами для модели системной логистики.

Одним из наиболее общих методов для оценивания надежности техники при эксплуатации являются системы отчетов, анализа и коррекции действий (FRACAS). Систематический подход к оцениванию надежности, безопасности и логистики основан на отчетах об отказах и авариях, менеджменте, анализе корректирующих / предупреждающих действий.

Системы любой сложности разрабатываются организациями, такими, как коммерческие компании или государственные учреждения. Организация работ по надежности (инжиниринг надежности) должна быть согласована со структурой компаний или учреждений. Для небольших компаний работы по надежности могут быть неформальными. С ростом сложности задач возникает необходимость формализации функций по обеспечению надежности. Так как надежность важна для заказчика, заказчик должен видеть некоторые аспекты организации этих работ.

Существует несколько типов организации работ по надежности. Менеджер проекта или главный инженер проекта может иметь в непосредственном подчинении одного или более инженеров по надежности. В более крупных организациях обычно образуется отдельное структурное подразделение, которое занимается анализом надежности, ремонтопригодности, качества, безопасности, человеческого фактора, логистикой. Так как работа по обеспечению надежности особенно важна на этапе проектирования, часто инженеры по надежности или соответствующие структуры интегрированы с проектными подразделениями.

В отдельных случаях компания создает независимую структуру, которая занимается организацией работ по надежности.

Некоторые высшие учебные заведения подготавливают инженеров по надежности. Другой формой подготовки специалистов в области надежности могут быть аккредитованные при высших учебных заведениях или колледжах учебные программы или курсы. Инженер по надежности может иметь профессиональный диплом именно по надежности, но для большинства работодателей это не требуется. Проводятся многочисленные профессиональные конференции, реализуются отраслевые программы подготовки кадров по вопросам надежности. К международным организациям инженеров и ученых в области надежности относятся IEEE Reliability Society, American Society for Quality (ASQ) и Society of Reliability Engineers (SRE).

Поскольку уровень надежности в значительной степени определяет развитие техники по основным направлениям, мы должны стремиться достичь высокой надежности технических средств, применяемых в технологическом процессе.

Но невозможно достичь высокой надежности и долговечности с непрогрессивным рабочим процессом и несовершенной схемой или несовершенными механизмами.

Поэтому первым направлением повышения надежности является обеспечение необходимого технического уровня изделий.

Кроме этого следует применять агрегаты с высокой надежностью и долговечностью, которые обеспечиваются самой природой, т.е. быстроходных агрегатов без механический передач, например, на электростанциях, агрегатов и деталей, работающих на чистом жидкостном трении или без механического контакта (электрическое торможение, бесконтактное электрическое управление); деталей, работающих при напряжениях ниже пределов выносливости, и др.

Также нужно использовать детали и механизмы, самоподдерживающие работоспособность: самоустанавливающихся, самоприрабатывающихся, самосмазывающихся, самонастраивающихся и самоуправляющихся системах.

Необходимо отметить, что переход на изготовление машин по строго регламентированной технологии заключает в себе резерв повышения надежности.

Этап конструирования системы является очень важным, поскольку на нем закладывается уровень надежности систем безопасности. При конструировании и проектировании следует ориентироваться на простые структуры, имеющие наименьшее количество элементов, поскольку сокращение количества элементов является существенной мерой повышения надежности.

Но уменьшение количества элементов не следует противопоставлять резервированию, как эффективному способу повышения надежности, но приводящему, на первый взгляд, к завышенному количеству элементов конструкции. Очевидно, что следует принимать компромиссное решение между необходимостью сокращения количества элементов и применением резервирования наименее надежных элементов.

Таким образом, под надежностью системы (технического изделия) понимают свойство удовлетворять цели применения при определенных условиях эксплуатации в течение определенного промежутка времени. Надежность означает, таким образом, «качество во времени».

Та надежность, которая в действительности реализуется у изделия, зависит от концепции разработки, культуры производства и последующей грамотной эксплуатации до некоторого предельного состояния (износа). Обеспечение надежности включает обнаружение всех видов возможных отказов изделия, установление их причин и планирование мероприятий, ограничивающих число отказов до приемлемого уровня. Разумеется, что расчеты по надежности представляют собой лишь малую часть объема работ в рамках целого комплекса практической деятельности по обеспечению надежности, но без «математики по надежности» не обойтись.

 

2.
Анализ и оценка деятельности ОАО «Нефтекамскшина»

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-04-01 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: