В процессе вычисления и статистико-экономического анализа средней арифметической может оказаться полезным знание некоторых ее математических свойств (без развернутых доказательств).
Средняя арифметическая постоянной величины равна этой постоянной:
_
А=А при А=const.
Сумма отклонений отдельных вариант от средней арифметической равна "0". Это свойство средней используется для проверки правильности расчетов, а также дает возможность облегчить вычисление средней арифметической.
_
å (Х-Х) =0
и для сгруппированных данных:
_
å (Х-Х) *f=0.
Сумма квадратов отклонений индивидуальных значений признаков (отдельных вариантов) от средней арифметической есть число наименьшее:
_
å (Х-Х) 2=min.
И для сгруппированных данных:
_
å (Х-Х) 2*f=min.
Первые три свойства выражают сущностные черты рассматриваемой категории. Следующие позиции можно рассматривать, как вычислительные, поскольку они имеют некоторое прикладное значение.
Если все варианты признака Х увеличить или уменьшить на постоянное число А, то и со средней арифметической произойдет то же самое:
_
å (Х±А) /n=Х±А.
_
И å (Х±А) *f/åf=Х±А.
Если все варианты разделить на какое-либо постоянное число d, то средняя арифметическая уменьшится в d раз:
_
å (Х/d) /n = X/d,
_
и å ((Х/d) *f) /åf = X/d.
Если все веса разделить на какое-либо постоянное число d, то средняя арифметическая не изменится:
_
å (X (f/d)) /å (f/d) = (1/d) *å (X*f) / (1/d) *åf =X.
Из этого свойства вытекают два методических следствия:
Следствие 1. Абсолютные значения весов можно заменять их процентным выражением, приняв åf=100,0.
Следствие 2. Если все веса равны между собой, то вычисления средней арифметической простой дает результат, аналогичный вычислению средней арифметической взвешенной.
|
Прикладные свойства средней арифметической можно проиллюстрировать, применив упрощенный способ расчета, называемый "способом моментов".
Формула средней арифметической, исчисленной способом моментов, имеет вид:
_
Х = m1*d+A, где
m1 - первый момент, вычисляемый по формуле:
m1=å ((x-А) /d*f) /åf, где
А - произвольная постоянная величина, чаще всего - это то значение признака, которое занимает срединное положение в данном ряду или то, которое имеет наибольшую частоту;
d - постоянная произвольная величина, выбирается после того, как найдены разности (х-А). Для вариационного ряда с равновеликими интервалами d принимается равным величине интервала. В остальных случаях d - это общий наибольший делитель разности (х-А).
Средняя гармоническая
Как указывалось выше, в статистической практике в большинстве случаев при определении средней величины применяется средняя арифметическая. Однако в ряде случаев используются и другие виды средних.
Средняя гармоническая - это величина обратная средней арифметической из обратных значений признака.
Простая средняя гармоническая - это величина, обратная средней арифметической из обратных значений признака. Средняя гармоническая бывает простой и взвешенной.
Простая средняя гармоническая вычисляется по формуле:
_
Х=n/å (1/X).
Например, на изготовление единицы продукции один рабочий затрачивает 40 мин, а другой - 48 мин. Следует определить среднюю затрату времени на изготовление единицы продукции.
|
Если исчислить по формуле средней арифметической, то получим:
_
Х= (40+48) /2=44мин.
Это средняя неточная, неправильная. Если на одно изделие затрачивается 40 мин, то при 8-часовом рабочем дне первый рабочий вырабатывает 12 изделий (8*60/40), а второй - 10 изделий (8*60/48). Вместе они вырабатывают в смену 22 изделия и затрачивают 960 мин (480+480), отсюда средние затраты времени исчислим по формуле средней гармонической:
_
Х= 2/ (1/40+1/48) =43,6мин.
Средняя гармоническая взвешенная определяется по формуле:
_
Х=åМ/å (М/х), где М=х*f.
Пример.
Партия деталей | Себестоимость одной детали Х, р | Затраты на всю партию деталей М, р |
1,8 | ||
2,0 | ||
2,3 |
_
Х=åМ/å (М/Х) = (180+400+165) / (180/1,8+400/2+165/2,3) =1,98р.
Средняя себестоимость единицы продукции исчислена по формуле средней гармонической, так как исходной базой исчисления средней себестоимости является отношение затрат на производство всей продукции к количеству единиц продукции.
Выбор вида средней зависит от задачи, стоящей перед исследователем, и характера исходных данных. Если имеются варианты и частота, то для расчета средней величины применяется средняя арифметическая. В тех случаях, когда имеются варианты и произведения вариант на частоты (Х*f), а частоты неизвестны, для расчета средней величины используется средняя гармоническая.
Средняя гармоническая используется в тех случаях, когда следует исчислить среднюю из величин, обратно пропорциональных изучаемому явлению.
|
Среднее геометрическое рассчитывается по формуле
_
Х= nÖx1*x2*…*xn= nÖn*xi
При применении средней геометрической индивидуальные значения признака представляют собой относительные величины динамики, построенные в виде цепных величин. Средняя характеризует средний коэффициент роста.
Средняя геометрическая используется так же для определения равноудаленной величины от max и min значений признака. Например, страховая фирма заключает договор на оказание клиентам различных услуг медстрахования. В зависимости от категорий медслучая, страховая сумма может изменяться от 100 до 10000грн. Средняя сумма выплат по страхованию Ö100*10000=1000грн.
При расчете средней по сгруппированным данным важное значение имеет обоснование и выбор веса при расчете средней арифметической взвешенной. Например, имеются данные о доле экспорта в стоимости товарной продукции предприятия, выпускающего минеральные удобрения.
Доля экспорта в товарной продукции | Число предприятий | Товарная продукция предприятия тыс. грн |
0,15 | ||
0,2 | ||
0,3 | ||
Итого |
Средняя доля экспорта, исчисленная как средняя арифметическая взвешенная по числу предприятий, является формальной средней:
_
Х= (0,15*5+0,2*7+0,3*4) /16=0, 209=20,9%
Логически обоснованным можно считать выбор в качестве весов объемов товарной продукции, так как доля экспорта
_
Х= (0,15*200+0,2*460+0,3*600) /1260=0,24=24%
В числителе общая стоимость экспорта, в знаменателе - общая стоимость продукции по 6предприятиям.
Применение средних хронологической, геометрической и квадратической ограничивается специфическими случаями, которые будут рассмотрены в следующих темах.