Средняя величина исчисляется как средняя арифметическая в тех случаях, когда имеются данные об отдельных значениях варьируемого признака.
Пример. Допустим, что имеется следующие данные о ежемесячном пробеге грузовых автомашин одной марки на автобазе:
Автомашины | ||||||||||
Пробег Тыс. км. | 4,8 | 5,1 | 5,1 | 6,5 | 6,5 | 6,5 | 6,5 | 7,0 | 7,0 | 7,0 |
Для получения искомой средней величины необходимо определить суммарный пробег всех десяти автомашин и разделить эту сумму на число автомашин.
(4,8+5,1+5,1+6,5+6,5+6,5+6,5+7,0+7,0+7,0) /10=62/10=6,2тыс. км.
В этом примере данные о ежемесячном пробеге составляют вариационный ряд, а ежемесячный пробег является признаком, размер которого колеблется - варьирующим признаком.
Вариационный ряд может быть дан не упорядоченно, то есть отдельные его значения (варианты), могут быть расположены в любом порядке (4,8; 6,5; 5,1; 7,0; 6,5), а может быть дан, как в нашем примере, упорядоченный, т.е. когда варианты расположены в порядке либо возрастания, либо убывания их значений. такой упорядоченный вариационный ряд называется ранжированным.
Каждая варианта (значение признака) обозначается через Х (х1………. х10). если же в вариационном ряду n вариант, то вычисление средней можно представить в следующем виде:
_
х = (х1+х2+……. +хn) /n;
Формула расчета средней арифметической простой:
_
х = åх/n, где
х - значение признака,
n - количество вариант в вариационном ряду.
В данном примере одна автомашина имела пробег 4,8 тыс. км; две машины - по 5,1 тыс. км; четыре - по 6,5 тыс. км и три - по 7,0 тыс. км.
Сгруппируем теперь автомашины по размерам пробега:
Группы авто (тыс. км) | Число авто |
4,8 | |
5,1 | |
6,5 | |
7,0 |
|
Имеем ряд распределения, в котором одинаковые варианты объединены в группы и определены их частоты, т.е. числа, показывающие, сколько раз (как часто) встречается данная варианта во всей совокупности. Частоты обозначаются буквой f (в нашем примере 1, 2, 4,3).
Что бы рассчитать средний пробег по имеющимся данным необходимо:
_
х = (4,8*1+5,1*2+6,5*4+7,0*3) / (1+2+3+4) =62/10=6,2тыс. км.
Порядок вычисления средней в общем виде:
_
х= (х1*f1+x2*f2+…+xn*fn) / (f1+f2+…+fn) =å (x*f) /åf, где
х - значения вариант,
f - значение весов каждой варианты (частоты).
Средняя арифметическая в этой форме называется средней арифметической взвешенной.
Сопоставление двух рассмотренных форм средней арифметической показывает, что средняя арифметическая простая и взвешенная отличается друг от друга лишь способом вычисления.
Назначением же и простой и взвешенной средней арифметической является определение среднего значения варьирующего признака с учетом распространенности отдельных вариант. Если в изучаемой совокупности варианты значений признака встречаются по одному разу или имеют одинаковый вес (т.е. каждая встречается одинаковое число раз), то применяется средняя арифметическая простая. Если варианты в совокупности встречаются по несколько раз, но имеют различные веса (т.е. каждая встречается разное число раз), то для определения среднего значения применяется средняя арифметическая взвешенная.
Иногда варианты признака, по которым вычисляется средняя, бывают представлены в виде интервалов (от-до).
Так, например, если ежемесячный пробег автомашины по группам автобаз представлен в виде интервалов:
|
от 4,0 до 5,0 тыс. км.
от 5,0 до 6,0 тыс. км и т.д. то в этих случаях конкретные значения вариант неизменны. Поэтому конкретное значение каждой варианты принимают условно равным середине следующего интервала. В нашем примере середина интервала составляет: для первой группы - (4,0 + 5,0) /2=4,5 тыс. км; для второй группы автобаз - (5,0+6,0) /2=5,5 тыс. км.
Исчисление середины интервала иногда усложняется тем, что у первой группы интервального ряда отсутствует начальная, а у последней группы - конечная граница интервала.
Например, для первой группы интервала: до 5,0 тыс. км; для последней - 8,0 тыс. км и более.
В этих случаях при определении величины варианты для первой группы исходят из того, что в этой группе величина интервала та же, что и в следующей за ней (т.е. второй группе), а при определении величины варианты для последней группы интервального ряда распределения - из предположения, что в последней группе величина интервала та же, что и в предыдущей группе.
На основе данных таблицы требуется определить средний ежемесячный пробег автомашин.
Таблица. Распределение автомашин по размеру их ежемесячного пробега
Группы автомашин по размеру ежемесячного пробега тыс. км. | Число автомашин в данной группе |
До 5,0 | |
5,0 - 7,0 | |
7,0 - 8,0 | |
8,0 и более | |
Итого |
Определяем середины интервалов, т.е. условные значения варианты каждой интервальной группы. Для второй и третей групп их определяют по формуле средней арифметической простой:
|
2гр= (5,0+7,0) /2=6 тыс. км.
3гр= (7,0+8,0) /2=7,5тыс. км
При вычислении середины интервала для первой группы, исходим из предположения, что величина интервала этой группы равна величине интервала следующей (второй) группы,
т.е. 7,0 - 5,0=2 тыс. км.
В таком случае начальное значение интервала первой группы составит 5,0 - 2,0=3,0 тыс. км. Следовательно, середина интервала для первой группы составляет: (3,0 + 5,0) /2=4 тыс. км.
При вычислении середины интервала для последней группы исходим из предположения, что она равна величине интервала в предыдущей (третей) группе, а именно, 8,0 - 7,0 = 1,0 тыс. км
Тогда конечное значение интервала последней группы равно 8,0+1,0=9,0 тыс. км. Следовательно, середина интервала для последней группы составляет: (8,0+9,0) /2=8,5 тыс. км. Результаты расчетов представлены в таблице.
Таблица. Показатели среднего размера ежемесячного пробега автомашин.
Группы машин по размеру их ежемесячного пробега, тыс. км | Середина интервала, тыс. км | Число автомашин |
До 5,0 | 4,0 | |
5,0-7,0 | 6,0 | |
7,0-8,0 | 7,5 | |
8,0 и более | 8,5 |
В данном примере средняя величина составляет:
_ Х= (4*40+6*80+7,5*130+8,5*50) / (40+80+130+50) =2040/300=6,8тыскм
В данном случае размер средней (средний ежемесячный размер пробега автомашин в целом) определяется приближенно, т.к расчет основан на условном допущении равномерности распределения вариант в пределах каждого интервала.