Постановка задачи и этапы синтеза. Дискретная цепь может осуществлять любые операции: фильтрацию сигнала, корректирование характеристик и т. п., т. е. выполнять функции любой аналоговой цепи.
В частности, при синтезе дискретных частотных фильтров нужно найти такие коэффициенты передаточной функции (19.40), или (19.41), частотная характеристика которой удовлетворяла бы нормам ослабления фильтра в полосах пропускания и непропускания (рис. 19.52, а). Определение коэффициентов - это задача аппроксимации. Известен целый ряд методов ее решения. Наиболее распространенным является следующий метод. Сначала рассчитывают аналоговый НЧ- прототип и получают его передаточную функцию Н(р), затем путем замены комплексной переменной р = Ф{z} переходят от Н(р) к передаточной функции дискретной цепи H(z).
(у — некоторый постоянный множитель), которое является первый приближением стандартного преобразования при разложении его в ряд Тейлора:
Из разложения (19.51) следует, что необходимо выбирать γ = 2/Т. Однако, далее мы покажем, что удобнее брать другие значения коэффициента γ.
Билинейное преобразование (19.50) переводит все точки из левой полуплоскости переменной р в точки на единичной окружности плоскости z. Так что, если была устойчива аналоговая цепь, будет устойчивой и дискретная. Подтвердим эти утверждения па примере.
Пример. Найдем положения точек на z-плоскости, соответствующих следующим значениям переменной р: р1 = —2; р2 = —2 + j2, р3 = j 2.
Из формулы (19.50) найдем выражение для расчета z:
Модуль z равен 1, т. е. точка р =j 2, лежащая на мнимой осп плоскости р, переходит в точку на единичной окружности плоскости z при использовании билинейного преобразования.
Переход к аналоговому прототипу применяется обычно для дискретных фильтров, имеющих бесконечную импульсную характеристику h(k), принимающую ненулевые значения на бесконечном множестве значений k = 0, 1.....
Дискретные цепи с конечной импульсной характеристикой, принимающей ненулевые значения лишь при k = 0, 1,..., N — 1, не имеют аналогов среди пассивных электрических фильтров, поэтому для их расчета применяются другие методы.
Нерекурсивные фильтры с передаточной функцией (19.42) всегда имеют конечные импульсные характеристики. Рекурсивные фильтры с передаточной функцией (19.40) могут иметь как конечные, так и бесконечные импульсные характеристики.
Требования к аналоговому фильтру-прототипу. Следует иметь в виду, что частотная характеристика аналогового фильтра определена на всей положительной полуоси частот, в то время как у дискретного фильтра она имеет тот же смысл только до частоты 0,5fд, затем она периодически повторяется (рис. 19.44). Ясно, что шкала частот дискретного фильтра оказывается деформированной относительно шкалы частот аналогового фильтра. Соответствие этих шкал легко установить из билинейного преобразования (19.50). Перепишем его в виде:
Обозначим, во избежание путаницы, нормированную частоту для аналогового фильтра-прототипа Ω a, обычную (т. е. ненормированную) частоту для дискретного фильтра будем, как и ранее, обозначать буквой f, а нормированную — буквой Ω. Теперь заменим в (19.53) комплексную переменную р на jΩ a, а комплексную переменную z на еj2πfT = еj2πf Ω и установим соответствие между частотами f (пли Ω) и Ω a:
При изменении частоты f от 0 до 0,5 f д, или нормированной частоты Ω от 0 до 0,5, нормированная частота Ω a в шкале аналогового прототипа будет пробегать значения от 0 до бесконечности (рис. 19.52).
Во многих справочниках по расчет фильтров граничная частота полосы пропускания принимается равной Ω ап = 1. Чтобы частота f и(или Ω и) дискретного фильтра пересчитывалась в Ω ап= 1 (рис. 19.52, б), из (19.54) ясно, что коэффициент у нужно взять равным:
Тем самым, произведен пересчет требований, предъявленных к дискретному фильтру (рис. 19.52, а) в требования к аналоговому НЧ- прототипу (рис. 19.52, 6).
Расчет аналогового НЧ- прототипа. Исходными данными для расчета являются требования к НЧ- пототипу (рис. 19.52, б). По ним, пользуясь любым справочником, рассчитывают передаточную функцию фильтра-прототипа.
Реализация рекурсивного фильтра. Для перехода от аналогового фильтра к дискретному воспользуемся заменой переменных (19.50)
В результате получаем Н(z) в виде дробно-рациональной функции, которая может быть реализована.
Пример. От передаточной функции (19.56) аналогового фильтра-прототипа перейдем к передаточной функции Н(z) дискретного фильтра.
Подставим в выражение (19.56) значение
Получим
Схема фильтра, имеющего такую передаточную функцию, приведена на рис. 19.53. Амплитудно-частотная характеристика A(Ω) = 20lgH(Ω), рассчитанная па основании формул для АЧХ типовых звеньев, показана па рис. 19.54 (кривая 1).
Аналогичным образом производится расчет фильтров со всплесками ослабления (нулями передачи).
Пример. Найдем передаточную функцию дискретного фильтра НЧ с АЧХ, равноволновой в полосе пропускания и со всплеском ослабления в полосе за-
Амплитудно-частотная характеристика А(Ω) = 201gtН(Ω) такого фильтра показана на рис. 19.54 (кривая 2).
Синтез фильтров с конечной импульсной характеристикой. Если известна передаточная функция H(z) дискретного фильтра, то для реализации фильтра с конечной импульсной характеристикой h(k), равной нулю везде кроме 0 ≤ k≤ N- 1, поступают следующим образом. Амплитудно-частотную характеристику H(Ω) фильтра дискретизируют, разбивая частотный интервал Ω = 0 ÷ 1 на N равных интервалов. В результате получают последовательность отсчетов АЧХ на N частотах Ω = n/N, т. е. H(n/N), 0 ≤n ≤ N - 1. Поскольку H(n/N) = N· Н(п), то, подставляя эту последовательность в формулу обратного дискретного преобразования Фурье (19.14), получаем выражение для дискретной импульсной характеристики h(k) фильтра
Как известно, конечную импульсную характеристику имеют нерекурсивные фильтры. Это значит, что полученные отсчеты дискретной импульсной характеристики h(k) являются коэффициентами усиления α0,α2,…, α N-1в схеме нерекурсивного фильтра, приведенной на рис. 19.33.
Пример. Найдем импульсную характеристику h (k) фильтра нижних частот, имеющего граничную частоту полосы пропускания Ω = 0,1, и АЧХ, приведенную на рис. 19.55. Импульсную характеристику будем рассчитывать для значения N = 30.
График конечной импульсной характеристики h(k) изображен на рис. 19.57.
Для реализации фильтра с такой импульсной характеристикой по схеме рис. 19.33 потребуется 30 усилителей и 29 элементов задержки, т. е. схема довольно громоздкая. Схема с обратными связями, реализующая АЧХ, изображенную на рис. 19.55, будет иметь гораздо меньше элементов. Однако достоинством нерекурсивных фильтров с конечной импульсной характеристикой является то, что они всегда устойчивы и, кроме того, обеспечивают линейные фазовые характеристики.
Синтез дискретных фильтров верхних частот, полосовых и режекторных. Требования к любому типу фильтра преобразуются
в требования к аналоговому ФНЧ-прототнпу. Затем рассчитывается аналоговый прототип, как это показано выше, п с помощью замены переменных переходят от Н(р) к Н(z).
Конечно, формулы замены переменных уже не такие, как для ФНЧ. Они приведены для разных типов фильтров в табл. 19.2. Требования к дискретным фильтрам графически изображены на рис. 19.59.
Цифровые фильтры
Функциональная схема цифрового фильтра. В отличие от дискретных фильтров в цифровом фильтре (ЦФ) осуществляется обработка цифровых сигналов (рис. 19.1, в). На рис. 19.60 изображена функциональная схема цифровой обработки аналоговых сигналов. Аналоговый сигнал x(t) подается на аналого-цифровой преобразователь (АЦП), где осуществляется дискретизация, квантование непрерывного сигнала и его кодирование. В результате на выходе АЦП формируется цифровой сигнал, представляющий собой
последовательность двоичных чисел с фиксированным количеством разрядов.
Например, если отсчет имеет величину 30 В, то запись числа в двоичном 8-разрядном коде будет такой: 00011110. Закодированные в двоичном коде отсчеты на выходе кодера АЦП на рисунке обозначены x(k). Далее двоичная последовательность поступает на вычислительное устройство (ВУ), которое представляет собой универсальную или специализированную микро ЭВМ, микропроцессорное или любое другое вычислительное устройство. Главное состоит в том, что в памяти ВУ должна быть записана программа вычисления, например, выражение (19.35), и отсчеты импульсной реакции, заданной цепи. Следовательно, в результате работы программы ВУ будет выдавать закодированные в двоичном коде отсчеты y(k). Далее двоичная выходная последовательность поступает на вход цифро-аналогового преобразователя (ЦАП), содержащий декодер и интерполятор. В ЦАП осуществляется декодирование сигнала, в результате формируется дискретный выходной сигнал y(kT) и после интерполяции на выходе ЦАП получаем выходной аналоговый сигнал y(t).
Как видим, ВУ может сыграть роль реальной цепи. И хотя самой физической цепи в наличии может и не быть, а задана она будет лишь в виде отсчетов импульсной реакции и программы вычислений, мы будет наблюдать на выходе описанной системы такое же выходное напряжение y(t), как и на выходе реальной цеписледует отметить, что при цифровой обработке ЦАП может и отсутствовать, если выходной сигнал надо получить в цифровой форме.
Аналогово-цифровое преобразование сигналов. Как следует из рис. 19.60 АЦП осуществляет дискретизацию аналогового сигнала, его квантование по уровню с шагом Δ (рис. 19.1, в) и кодирование. Обычно процесс квантования осуществляется одновременно с его
кодированием, в результате на выходе АЦП получаем сигнал, представленный в некотором цифровом коде.
Одним из основных параметров кода является его основание, соответствующее выбранной системе счисления. Близко к оптимальным реализуются двоичные или бинарные коды, которые нашли наибольшее распространение в связи.
Известно большое количество различных устройств преобразования непрерывного сообщения в бинарный код. Все их можно разбить на три основные группы: преобразователи последовательного счета, поразрядного кодирования и преобразователи считывания. Наибольшее применение в связи нашли преобразователи первых двух типов.
Принцип действия преобразователя последовательного счета с временным преобразованием иллюстрируется схемой изображенной на рис. 19.61 и временными диаграммами на рис. 19.62.
Кодирование в данной схеме осуществляется следующим образом. Аналоговый сигнал после дискретизации и квантования хц(t) поступает на вход широтно-импульсного модулятора (ШИМ), на выходе которого формируются прямоугольные импульсы ширина которых пропорциональна отсчету сигнала x ц (t) в моменты kT (рис. 19.62). Далее этот ШИМ- сигнал подается на схему* «И», на второй вход которой поступают импульсы с генератора тактовой частоты (ГТИ). На выходе схемы «И» формируются импульсы, число которых в «пачке» пропорционально ширине импульса. Эти импульсы поступают в двоичный счетчик, где число их фиксируется в двоичной системе счисления. Задним фронтом ШИМ- импульса запускается устройство считывания результата, с выхода которого кодовая комбинация поступает в ВУ. Считывание может осуществляться последовательно или параллельно (последовательный пли параллельный код).
На рис. 19.62 приведен вид кодовой группы на выходе при последовательном считывании. Для возвращения двоичного счетчика в исходное состояние на него через линию задержки ЛЗ с τ3 = τ счит подается сигнал сброса, формируемый задним фронтом ШИМ- импульса. С приходом следующего измерительного импульса работа кодера повторяется.
Аналогичным образом можно кодировать и амплитудно - модулированную импульсную последовательность (кодер последовательного счета с частотным преобразованием). Для этого АИМ- сигнал подается на ЧМ- генератор (мультивибратор), и осуществляется счет импульсов этого генератора за фиксированные промежутки времени по рассмотренной выше схеме.
В преобразователях поразрядного кодирования производится последовательное сравнение выходного сигнала с набором эталонных напряжений, каждое из которых соответствует определенному разряду кода. В качестве эталонных напряжений используется геометрическая прогрессия вида
где N — число разрядов в бинарном коде. Причем Е > umах, где u тах — максимально возможное значение кодирующего сигнала.
При поразрядном кодировании вначале формируется старший разряд кода путем сравнения u(t) с Е/2 (например, если u(t)≥ E/2, то формируется символ «1», в противном случае — «0»). Одновременно на выходе схемы сравнения образуется напряжение u(t)-E/2 при u(t)≥E/2 или u(t) при u(t)<E/2. Затем указанная процедура повторяется с полученным напряжением для эталонного напряжения Е/4 и т. д. В результате N сравнений получается символ самого младшего разряда.
Шумы квантования. При квантовании сигнала минимальный шаг квантования Δ (расстояние между смежными разрешенными уровнями) соответствует единице младшего двоичного разряда. Причем, поскольку при квантовании происходит округление значений сигнала до ближайшего дискретного уровня, то появляются ошибки округления │ε│≤Δ/2. Если x(t) известен неточно, то ε -является случайной величиной и при малом Δ распределено по равномерному закону. Последовательность значений ошибки ε,
возникающей при квантовании дискретного сигнала x(kT) образует дискретный случайный процесс ε (kT) называемый шумом квантования (рис. 19.63).
Дисперсия шума квантования определяется для равномерного закона распределения р(ε) формулой
Если шаг квантования Д мал, то соседние значения ε (kT) можно считать некоррелированными.
Шум квантования является одним из главных источников погрешности цифровой обработки сигнала. Шум на выходе цифрового фильтра ζ(k Т) при условии некоррелированности отсчетов ε(kT) можно определить согласно (19.35)
Поскольку для ЦФ обычно выполняется условие (19.36),то дисперсия шума квантования на выходе всегда конечна.
Ошибки округления. При обработке цифрового сигнала в ВУ возникают дополнительные ошибки округления (усечения). Действительно, если при использовании в ВУ чисел с фиксированной запятой сложение чисел не приводит к увеличению разрядов, то при умножении число разрядов возрастает и возникает необходимость
округления результата, что естественно приводит к ошибкам называемым ошибками округления. По своему характеру эти ошибки аналогичны шуму квантования. Для их учета обычно в схему ЦФ дополнительно вводят источники шума ei(kT), число которых равно числу умножителей. На рис. 19.64 изображена схема рекурсивного ЦФ звена 1-го порядка с учетом источников шума округления. Источники шума e(kT) имеют одинаковую дисперсию σ2 = Δ2/12, где Δ определяется числом используемых разрядов. Если принять, что источники eo(kT), e1(kT) н е2(kT) независимы, то дисперсия суммарного шума округления будет равна
Для другой схемы реализации ЦФ результирующая вычисляется в зависимости от того, куда будет подключен источник шума e(kT) и в общем случае может быть найден по формуле (19.60) или с учетом равенства Парсеваля
Кроме ошибок квантования и округления при синтезе ЦФ возникают ошибки, вызванные неточными значениями параметров фильтра. Эти ошибки особенно опасны в рекурсивных фильтрах высокого порядка, т. к. могут привести к потере устойчивости ЦФ, поэтому обычно используют звенья 1-го и 2-го порядков (см. § 19.5). Кроме рассмотренных выше при синтезе ЦФ возникают еще ряд дополнительных явлений, приводящих к погрешности цифровой фильтрации. К ним, например, относятся так называемые предельные циклы низкого уровня, представляющие собой периодические колебания, возникающие на выходе ЦФ при низком входном сигнале и обусловленные округлением результатов вычисления. Все эти явления и ошибки подробно исследуются в специальной литературе.
Цифро-аналоговое преобразование. Преобразование цифровых сигналов в аналоговый осуществляется с помощью различных цифро-аналоговых преобразователей (ЦАП). В основе простейшего ЦАП лежит принцип двоично-взвешенного суммирования напряжений или токов. На рис. 19.65 изображены схемы простейших ЦАП на базе резистивных цепей.
В ЦАП с двоично-весовыми резисторами (рис. 19.65, а) требуется меньшее число резисторов, однако при этом необходим целый ряд номиналов прецизионных сопротивлений. Аналоговое выходное напряжение Uан ЦАП определяется как функция двухуровневых входных напряжений:
где п — число разрядов ЦАП; т — коэффициент, зависящий от числа разрядов ЦАП.
Для обеспечения высокой точности работы резистивные цепи ЦАП должны работать на высокоомную нагрузку. Чтобы согласовать резистивные цепи с низкоомной нагрузкой, используют буферные усилители на основе операционных усилителей, показанные на рис. 19.65, а, б.
Интерполяторы. На выходе ЦАП сигнал обычно имеет форму последовательности импульсов модулированных по амплитуде (АИМ- сигнал). Для восстановления (демодуляции) из АИМ- последовательности аналогового сигнала достаточно использовать ФНЧ с частотой среза ωс = 2π/Т, где Т — частота дискретизации АИМ- сигнала. Существуют и более сложные интерполирующие устройства, которые описаны в специальной литературе.
В заключении следует отметить, что в связи с бурным развитием вычислительной, микропроцессорной техники цифровые методы обработки сигналов получают все большее распространение. Они имеют более широкие возможности реализации сложных и эффективных алгоритмов обработки сигналов, которые в большинстве своем недоступны для реализации аналоговыми цепями.