III аналитическая группа




IVA-группа

 

Элементы IVA-группы имеют электронную формулу ns2np2. Углерод и кремний являются неметаллами, германий, олово, свинец – металлами. Для элементов характерны степени окисления +4, +2, 0, -4 и валентность IV. В возбужденном состоянии атомы имеют конфигурацию ns1nps, в этом состоянии для них характерна sp3 -гибридизация.

 

5.1. Свойства углерода и его соединений

 

Характерные степени окисления углерода, электронные формулы соответствующих ионов, химические свойства и примеры соединений приведены в таблице.

Свойства углерода

2С + O2(недостаток) → t → 2CO

С + O2(избыток) → t → CO2

С + CO2 → t → 2CO

С + CuO → t → Cu + CO

4С + Fe3O4 → t → 3Fe + 4CO

ЗС + СаО → t → СаС2 + CO

2С + Са → t → СаС2

ЗС + 4Al → t → Al4С3

С + 4НNO3(конц.) → t → CO2 + 4NO2 + 2Н2O

Свойства оксида углерода (II) – угарного газа

2CO + O2 → t → 2CO2

ЗCO + Fe2O3 → t → 2Fe + ЗCO2

CO + CuO → t → Cu + CO2

CO + H2O → t, катализатор → CO2 + Н2

CO + NaOH → t, p → HCOONa

Свойства оксида углерода(IV) – углекислого газа

CaCO3 + 2HCl = CaCl2 + Н2O + CO2↑

CaCO3 → t → СаО + CO2

CO2 + Н2O ↔ Н2CO3 ↔ H+ + HCO3¯ ↔ 2Н+ + CO32-

CO2 + Са(OH)2 = CaCO3↓ + Н2O

CO2 + Н2O + CaCO3↓ = Са(HCO3)2

CO2 + 2Mg → t → С + 2MgO

Свойства карбонатов и гидрокарбонатов

NaOH + CO2 = NaHCO3

2NaOH + CO2 = Na2CO3 + H2O

Са(HCO3)2 → 100 °C → CaCO3↓ + Н2O + CO2↑

CaCO3 → 1000 °C → СаО + CO2

2NaHCO3 → t → Na2CO3+ Н2O + CO2↑

NaHCO3+ CH3COOH = CH3COONa + Н2O + CO2↑

CaCO3 + Н2O + CO2 = Са(HCO3)2

Са(HCO3)2 + Са(OH)2 = CaCO3↓ + 2Н2O

Na2CO3 + H2O ↔ NaHCO3 + NaOH

NaHCO3 + (Н2O) ↔ NaOH + (Н2O) + CO2

Свойства карбидов

СаС2 + 2Н2O = Са(OH)2 + С2Н2

Al4С3 + 12HCl = 4AlCl3 + ЗCH4

 

5.2. Получение и свойства кремния и его соединений

 

Простое вещество

SiO2 + 2Mg → t → Si + 2MgO

Si + O2 → t → SiO2

Si + 2F2 = SiF4↑

Si + 2Mg → t → Mg2Si

Si + 2KOH + 2H2O = K2SiO3 + 2H2

Силан SiH4

Mg2Si + 4HCl = 2MgCl2 + SiH4↑

SiH4 + 2O2 = SiO2 + 2Н2O (самовоспламенение на воздухе)

Оксид кремния (IV)

SiO2 + H2O ≠

SiO2 + 2NaOH → t, сплавление → Na2SiO3 + Н2O

SiO2 + 6HF = H2[SiF6] + 2H2O

Кремниевая кислота и силикаты. Кремниевая кислота имеет полимерное строение и состав xSiO2 • yH2O. H2SiO3 – условная формула, такого соединения не выделено.

Na2SiO3 + 2HCl = H2SiO3↓ + 2NaCl

Na2SiO3 + 2Н2O + 2CO2 = 2NaHCO3 + H2SiO3↓

H2SiO3 → t → SiO2 + H 2O

 

5.3. Получение и свойства соединений олова и свинца

 

Гидроксиды олова и свинца имеют амфо-терные свойства. При этом в степени окисления элемента +2 в гидроксидах преобладают основные свойства, а в степени окисления +4 – кислотные. Соединения Sn2+ имеют восстановительные свойства, а соединения РЬ4+ – окислительные:

SnCl2 + 2NaOH = Sn(OH)2↓ + 2NaCl

Sn(OH)2↓ + 2HCl = SnCl2 + 2H2O

Sn(OH)2↓ + 2NaOH = Na2[Sn(OH)4]

SnCl4 + 4NH4OH = H2SnO3↓ + 4NH4Cl + H2O

H2SnO3↓ + 2NaOH + H2O = Na2[Sn(OH)6]

H2SnO3↓ + 4HCl = SnCl4 + 3H2O

SnCl2 + 2FeCl3 = 2FeCl2 + SnCl4

PbO2 + 4HCl = PbCl2 + Cl2↑ + 2H2O

 

 

VA-группa

 

Элементы VA-группы имеют электронную формулу ns2nps. Азот, фосфор и мышьяк являются неметаллами, висмут и сурьма имеют металлические свойства. Наиболее характерные степени окисления: +5, +3, 0, -3. Оксиды Э2O5 имеют кислотные свойства, свойства оксидов Э2O3: кислотные – для N и Р, амфотерные – для As и Sb, основные – для Bi.

 

6.1. Получение и свойства азота и его соединений

 

Характерные степени окисления азота, соответствующие им электронные формулы, химические свойства и примеры соединений приведены в таблице.

Простое вещество

NH4NO2 → t → N2 + 2H2O

N2 + 6Li = 2Li3N

N2 + 3Ca → t → Ca3N2

N2 + O2 → t → 2NO

Соединения азота (-3)

N2 + ЗН2 → t, p, катализатор → 2NH3

Ca3N2 + 6H2O = ЗСа(OH)2 + 2NH3

2NH4Cl + Са(OH)2 → t → CaCl2 + 2NH3 + 2Н2O

NH3 + Н2O ↔ NH3 • Н2O ↔ NH4+ + OH¯

NH3 + HCl = NH4Cl

4NH3 + CuSO4 = [Cu(NH3)4]SO4

2NH3 • H2O + AgCl = [Ag(NH3)2]Cl + 2H2O

4NH3 • H2O + Ag2O = 2[Ag(NH3)2]OH + 3H2O

4NH3 + 3O2 = 2N2 + 6H2O

4NH3 + 5O2 → Pt, t → 4NO + 6H2O

2NH3 + 3CuO → t → 3Cu + N2 + 3H2O

NH4Cl + NaOH = NaCl + NH3 + H2O

NH4Cl → t → NH3 + HCl

NH4NO2 → t → N2 + 2H2O

(NH4)2CO3 → t → 2NH3 + H2O + CO2

NH4NO3 → t → N2O + 2H2O

NH4NO2 → t → N2 + 2H2O

(NH4)2Cr2O7 → t → N2 + Cr2O3 + 4H2O

Оксиды азота

2N2O → t → 2N2 + O2

2HNO2 = NO2 + NO + H2O

2NO2 + Н2O(хол.) = HNO2 + HNO3

2NO2 + 2NaOH = NaNO3 + NaNO2 + H2O

3NO2 + H2O(rop.) = 2HNO3 + NO

4NO2 + O2 + 2H2O = 4HNO3

N2O3 = NO + NO2

2N2O5 = 2NO2 + O2

N2O5 + H2O = 2HNO3

N2O5 + 2NaOH = 2NaNO3 + H2O

Соединения азота (+3)

Ba(NO2)2 + H2SO4(разб.) = BaSO4↓ + 2HNO2 (на холоду)

NO2 + NO + H2O = 2HNO2 (на холоду)

2HNO2 = NO2 + NO + H2O

2HNO2 + 2HI = I2 + 2NO + 2H2O

5NaNO2 + 3H2SO4 + 2KMnO4 = 2MnSO4 + 5NaNO3 + K2SO4 + 3H2O

2NaNO2 + 2H2SO4 + 2KI = I2 + 2NO + K2SO4 + Na2SO4 + 2H2O

Соединения азота (+5)

N2 + 3H2 → t, p, катализатор → 2NH3

4NH3 + 5O2 → Pt, t → 4NO + 6H2O

2NO + O2 = 2NO2

4NO2 + O2 + 2H2O = 4HNO3

NaNO3 + H2SO4(конц.) = HNO3 + NaHSO4

4HNO3 → hv → 4NO2 + O2 + 2H2O

Cu + 4HNO3(конц.) = Cu(NO3)2 + 2NO2 + 2H2O

3Cu + 8HNO3(разб.) = 3Cu(NO3)2 + 2NO + 4H2O

4Ca + 10HNO3(конц.) = 4Ca(NO3)2 + N2O + 5H2O

4Са + 10HNO3(разб.) = 4Ca(NO3)2 + NH4NO3 + 3H2O

HNO3(конц.) пассивирует на холоду Al, Fe, Cr.

Fe + 6HNO3 (конц.) → t → Fe(NO3)3 + 3NO2 + 3H2O

Fe + 4HNO3 (разб.) = Fe(NO3)3 + NO + 2H2O

ЗР + 5HNO3(разб.) + 2Н2O = 3H3PO4 + 5NO

S + 6HNO3 (конц.) = H2SO4 + 6NO2 + 3H2O

2KNO3 → t → 2KNO2 + O2 (металлы до Mg в ряду напряжений)

2Cu(NO3)2 → t → 2CuO + 4NO2 + O2 (металлы от Mg до Cu)

2AgNO3 → t → 2Ag + 2NO2 + O2 (металлы после Cu в ряду напряжений)

4Fe(NO3)2 → t → 2Fe2O3 + 8NO2 + O2

 

6.2. Получение и свойства фосфора и его соединений

 

Простое вещество (Р4 – белый фосфор, Р – красный фосфор)

2Са3(PO4)2 + 10C + 6SiO2 → t → Р4 + 6CaSiO3 + 10CO

4Р + 5O2 → t → Р4О10

Р4 + 6Са → t → 2Са3Р2

Фосфин РН3

Zn3P2 + 6HCl = 2PH3↑ + 3ZnCl2

Са3Р2 + 6Н2O = 2PH3↑ + 3Ca(OH)2

2РН3 + 2O2 = Н3PO4

РН3 + HI= PH4I (на холоду)

Фосфористая кислота Н3PO3 (Н2РHO3 – двухосновная кислота)

Р4O6 + 6Н2O = 4Н3PO3

Н3PO3 + NaOH = NaH2PO3 + H2O (NaHPHO3 – кислая соль)

Н3PO3 + 2NaOH = Na2HPO3 + H2O (Na2PHO3 – средняя соль)

Фосфорные кислоты: метафосфорная НPO3 (Н n (PO3) n, где n = 3, 4), дифосфорная – Н4Р2O7, ортофосфорная – Н3PO4.

Р4 + 5O2 = Р4О10

Р4О10 → Н2O, 0 °C → НPO3 → Н2O, 20 °C → Н4Р2O7 → Н2O, 10 °C → Н3PO4

Н3PO4 → t → Н4Р2O7 → t → НPO3

Н3PO4 + NH3 = NH4H2PO4

Н3PO4 + NaOH = NaH2PO4 + H2O

 

Н3PO4 + 2NaOH = Na2HPO4 + 2H2O

Н3PO4 + 3NaOH = Na3PO4 + 3H2O

Ca3(PO4)2 + 3H2SO4 = 3CaSO4 + 2H3PO4

Са3(PO4)2 + 2H2SO4 = Са(Н2PO4)2 + 2CaSO4

2Са3(PO4)2 + 10C + 6SiO2 → t → Р4 + 6CaSiO3 + 10CO

 

 

VIA-группа

 

VIA-группу образуют четыре неметалла: кислород, сера, селен, теллур, называемые халькогенами, и радиоактивный металл полоний. Атомы элементов VIA-группы имеют электронную формулу ns2np4. Для них характерны степени окисления -2, 0, +4, +6. У атома кислорода отсутствуют 2d -орбитали, поэтому его валентность равна двум. Наличие d -орбиталей у атомов других элементов позволяет им иметь валентности два, четыре или шесть.

 

7.1. Кислород и его соединения

 

Кислород – самый распространенный элемент земной коры. Кислород представляет собой газ без цвета, без вкуса, без запаха. Возможные степени окисления кислорода, электронные формулы соответствующих ионов, химические свойства и примеры соединений приведены в таблице.

Получение и свойства кислорода

Кислород может быть получен при сжижении и разделении воздуха.

2КMnO4 → t → К2MnO4 + MnO2 + O2

2KClO3 → t → 2KCl + 3O2

(NaOH) + 2Н2O → электролиз раствора → 2Н2 + O2

O2 + 2F2 = OF2

2Са + O2 = 2СаО

S + O2 = SO2

2С2Н2 + 5O2 = 4CO2 + 2Н2O

4FeS2 + 11O2 → t → 2Fe2O3 + 8SO2

4NH3 + 3O2 = 6Н2O + 2N2

4NH3 + 5O2 → p, t, Pt → 4NO + 6Н2O

Получение и свойства озона O3

3O2 → hv → 2O3

O3 = O2 + О

KI + Н2O + O3 = I2 + 2KOH + O2

Свойства пероксида водорода

ВaO2 + H2SO4 = BaSO4↓ + Н2O2 (на холоду)

2Н2O2 → MnO2 → 2Н2O + O2

2KMnO4 + 3H2SO4 + 5Н2O2 = 5O2 + 2MnSO4 + K2SO4 + 8H2O

2KI + H2SO4 + H2O2 = I2 + K2SO4 + 2Н2O

Н2O2 + O3 = 2O2 + Н2O

 

7.2. Сера и ее соединения

 

Характерные степени окисления серы, соответствующие им электронные формулы, химические свойства и примеры соединений приведены в таблице.

Чистая сера – хрупкое кристаллическое вещество желтого цвета. Сера имеет несколько модификаций: ромбоэдрическую и призматическую, также пластическую (аморфную). Аллотропия серы обусловлена различной структурой кристаллов, построенных из восьмиатомных молекул S8. В расплаве серы существуют молекулы S8, S6, в парах серы – молекулы S6, S4, S2.

Получение и свойства серы

FeS2 → t → FeS + S

SO2 + 2H2S = 3S + 2H2O

S + O2 → t → SO2

Fe + S → t → FeS

Hg + S = HgS

S + 6HNO3(конц.) = H2SO4 + 6NO2 + 2H2O

Получение и свойства соединений серы (-2)

FeS + 2HCl = FeCl2 + H2S

H2S ↔ H+ + HS¯ ↔ 2H+ + S2-

2H2S + O2 (недостаток) = 2S↓ + 2H2O

2H2S + 3O2 (избыток) → t → 2SO2 + 2H2O

2H2S + SO2 = 3S↓ + 2H2O

H2S + I2 = S↓+ 2HI

5H2S + 3H2SO4 + 2KMnO4 = 5S↓ + 2MnSO4 + K2SO4 + 8H2O

3H2S + 4H2SO4 + K2Cr2O7 = 3S↓ + Cr2(SO4)3 + K2SO4 + 7H2O

2NaOH + H2S = Na2S + 2H2O

Na2S + 2H2O ↔ NaHS + NaOH

Al2S3 + 6H2O = 2Al(OH)3↓ + 3H2S↑

3Na2S + Cr2(SO4)3 + 6H2O = 2Cr(OH)3↑ + 3H2S↑+ 3Na2SO4

Получение и свойства соединений серы (+4)

S + О2 → t → SO2

4FeS2 + 11O2 → t → 2Fe2O3 + 8SO2

SO2 + Н2O ↔ H2SO3 ↔ Н+ + HSO3¯ ↔ 2Н+ + SO32-

Na2SO3 + 2HCl = 2NaCl + H2O + SO2↑

SO2 + NaOH = NaHSO3

SO2 + 2NaOH = Na2SO3 + H2O

H2SO3 + 2H2S = 3S↓ + 3H2O

2SO2 + O2 → p, t, Pt → 2SO3

H2SO3 + Cl2 + H2O = H2SO4 + 2HCl

5SO2 + 2H2O + 2KMnO4 = 2H2SO4 + 2MnSO4 + K2SO4

Получение и свойства соединений серы (+6)

4FeS2 + 11O2 → t → 2Fe2O3 + 8SO2

2SO2 + O2 → p, t, V2O5 → 2SO3

H2O + SO3 = H2SO4

H2SO4 + SO3 = H2SO4 • SO3 = H2S2O7 (олеум)

H2S2O7 + H2O = 2H2SO4

Fe + H2SO4 (разб.) = FeSO4 + H2

Cu + H2SO4 (разб.) ≠

H2SO4(конц.) + H2O = H2SO4 • H2O + Q

Концентрированная серная кислота пассивирует на холоду Al, Fe, Cr.

2Fe + 6H2SO4 (конц.) → t → Fe2(SO4)3 + 3SO2 + 6Н2O

Cu + 2H2SO4 (конц.) → t → CuSO4 + SO2 + 2Н2O

3Zn + 4H2SO4 (конц.) = 3ZnSO4 + S + 4H2O

4Ca + 5H2SO4 (конц.) = 4CaSO4 + H2S + 4H2O

2H2SO4 (конц.) + S → t → 3SO2 + H2O

2H2SO4 (конц.) + С → t → 2SO2 + CO2 + 2H2O

 

 

VIIA-группa

 

Атомы галогенов, образующих VIIA-группу, имеют электронную конфигурацию ns2np5. Все галогены являются активными неметаллами, окислителями. Их активность уменьшается в ряду F > Cl > Br > I > At. Характерные степени окисления галогенов: -1, 0, +1, +3, +5, +7. Однако у фтора, наиболее активного неметалла, есть лишь степени окисления -1 и 0. F2 и Cl2 – газы, Br2 – жидкость, I2 – твердое вещество. С увеличением радиуса атомов галогенов растет объем их атомов и молекул, а также их поляризуемость. Это приводит к увеличению сил межмолекулярного взаимодействия (сил Ван дер Ваальса) и повышению температур плавления и кипения простых веществ.

HF, HCl, HBr, HI при растворении в воде образуют кислоты (HF – слабую, HCl, HBr и HI – сильные). В HF имеются сильные водородные связи. В ряду HCl – HBr – HI сила кислот несколько увеличивается в связи с увеличением поляризуемости молекул, пропорциональной их объему.

Электронная формула атома водорода 1s1. С галогенами его объединяет способность принимать один электрон и образовывать стабильную электронную оболочку 1s2. Поэтому часто водород располагают вместе с галогенами в VIIA-группе.

 

8.1. Водород и его соединения

 

Водород – наиболее распространенный элемент во Вселенной. Водород – легкий газ без цвета, без запаха. Возможные степени окисления водорода, электронные формулы соответствующих ионов, химические свойства и примеры соединений приведены в таблице.

CH4 + 2Н2O → t, катализатор → 4Н2 + CO2

Zn + 2HCl = ZnCl2 + Н2

(NaOH) + 2Н2O → электролиз раствора → 2Н2 + O2

Н2 + 2Na → t → 2NaH

Н2 + Са → t → СаН2

2Н2 + O2 = 2Н2O

Н2 + Cl2 → hv → 2HCl

ЗН2 + N2 → t, p, катализатор → 2NH3

NaH + Н2O = NaOH + Н2

СаН2 + 2HCl = CaCl2 + 2Н2

 

8.2. Вода

 

Молекулы воды связаны водородными связями: n H2O = (Н2O) n, поэтому вода жидкая в отличии от ее газообразных аналогов H2S, H2Se и Н2Те.

Кислород в молекуле воды находится в состоянии sp3 -гибридизации, две связи О—Н и две неподеленные пары кислорода располагаются тетраэдрически, угол между связями О—Н равен 104,5°, поэтому молекула воды полярная. Вода является хорошим растворителем для веществ с ионными или полярными связями.

2Na + 2Н2O = 2NaOH + Н2

Fe + 4Н2O → t → Fe3O4 + 4Н2

Ag + Н2O ≠

Н2O + СаО = Са(OH)2

Н2O + Al2O3 ≠

N2O3 + Н2O = 2HNO2

2CuSO4 + 2Н2O ↔ (CuOH)2SO4 + H2SO4

H2SO4(конц.) + H2O = H2SO4 • H2O

CuSO4 + 5H2O = CuSO4 • 5H2O

 

8.3. Фтор и его соединения

 

Фтор является наиболее активным неметаллом, сильным окислителем.

F2 + Н2 = 2HF

2F2 + 2Н2O = 4HF + O2

F2 + 2NaCl = 2NaF + Cl2

4HF + SiO2 = SiF4↑ + 2Н2O

 

8.4. Хлор и его соединения

 

Хлор – тяжелый газ желто-зеленого цвета, с резким запахом.

 

2NaCl + 2Н2O → электролиз раствора → Н2 + Cl2 + 2NaOH

2KMnO4 + 16HCl = 2KCl + 2MnCl2 + 5Cl2 + 8Н2O

MnO2 + 4HCl = Cl2 + MnCl2 + 2Н2O

Cl2 + Н2 → hv → 2HCl

CH4 + Cl2 → hv → CH3Cl + HCl

С2Н4 + Cl2 = С2Н4Cl2

Cl2 + 2KBr = 2KCl + Br2

Cl2 + Н2O = HCl + HClO (реакция диспропорционирования)

HClO = HCl + О (атомарный кислород – окислитель)

Cl2 + 2KOH = KCl + KClO +Н2O

2Cl2 + 2Са(OH)2 = CaCl2 + Са(ClO)2 + 2Н2O

Смесь CaCl2 и Са(ClO)2 – хлорная, или белильная, известь.

ЗCl2 + 6KOH → 100 °C → 5KCl + KClO3 + ЗН2O

KClO3 – хлорат калия, или бертолетова соль.

4KClO3 → 400 °C → KCl + ЗKClO4

2KClO3 → v →2KCl + 3O2

Сила кислот растет в ряду:

HClO → HClO2 → HClO3 → HClO4.

2HCl + Fe = FeCl2 + H2↑

2HCl + CuO = CuCl2 + H2O

3HCl + Al(OH)3 = AlCl3 + 3H2O

HCl + AgNO3 = AgCl↓ + HNO3

HCl + NH3 = NH4Cl

 

8.5. Бром, иод и их соединения

 

Бром – темно-бурая жидкость с резким запахом, а иод – кристаллическое вещество темного цвета. Изменение фазового состояния галогенов обусловлено увеличением межмолекулярного – дисперсионного взаимодействия, связанного с увеличением размеров и поляризуемости молекул галогенов в ряду хлор → бром → иод.

2NaBr + Cl2 = 2NaCl + Br2

2NaI + Cl2 = 2NaCl + I2

2Al + ЗBr2 = 2AlBr3

2Al + 3I2 = 2AlI3

Br2 + Н2 2HBr

I2 + Н2 ^

AgNO3 + NaBr = AgBr↓ + NaNO3

AgNO3 + NaI = AgI↓+ NaNO3

I2 + 2Na2S2O3 = 2NaI + Na2S4O6

10KI + 8H2SO4 + 2KMnO4 = 5I2 + 2MnSO4 + 6K2SO4 + 8H2O

 

 

9. d-Элементы

 

В атомах d-элементов (переходных элементов) заполняется электронами d-под-уровень предвнешнего уровня. На внешнем уровне атомы d -элеметов имеют, как правило, два s-электрона. Близость строения валентных уровней атомов переходных элементов определяет их общие свойства. Все они являются металлами, имеют высокую прочность, твердость, высокую электро– и теплопроводность. Многие из них электроположительны и растворяются в минеральных кислотах, однако среди них есть металлы, не взаимодействующие обычным способом с кислотами. Большинство переходных металлов имеют переменную валентность. Максимальная валентность, как и максимальная степень окисления, как правило, равно номеру группы, в которой находится данный элемент.

 

9.1. Хром и его соединения

 

Хром представляет собой ковкий тягучий металл серо-стального цвета. Электронная формула атома хрома 1s22s22p63s23p63d54s1.

Характерные степени окисления хрома, электронные формулы соответствующих ионов, химические свойства и примеры соединений приведены в таблице.

Получение и свойства хрома

FeO • Cr2O3 + 4CO → t → Fe + 2Cr + 4CO2 (Fe + 2Cr) – феррохром

Сr2O3 + 2Al → t → 2Сr + Al2O3 – метод алюминотермии

Хром пассивируется на холоду концентрированными азотной и серной кислотами.

Сr + 2HCl = СrCl2 + Н2

СrCl2 + 2NaOH = Cr(OH)2↓ + 2NaCl

Свойства соединений хрома (+2) и хрома (+3)

Гидроксид хрома(II) сразу окисляется кислородом воздуха.

4Сr(OH)2 + O2 + 2Н2O = 4Сr(OH)3

СrCl3 + 3NaOH = Cr(OH)3↓ + 3NaCl

Cr(OH)3↓ + 3Na(OH) = Na3[Cr(OH)6]

Cr2O3 + 2NaOH → t → 2NaCrO2 + H2O

Cr(OH)3↓ + 3HCl = CrCl3 + 3H2O

2Cr(OH)3 → t → Cr2O3 + 3H2O

2CrCl3 + 3Cl2 + 16KOH = 2K2CrO4 + 12KCl + 8H2O

2Na3Cr(OH)6 + 3Br2 + 4NaOH = 2Na2CrO4 + 6NaBr + 8H2O

Свойства соединений хрома (+6)

CrO3 + Н2O = H2CrO4

2CrO3 + H2O = H2Cr2O7

Желтый раствор хромата калия устойчив в щелочной среде, оранжевый раствор дихромата калия – в кислой среде.

К2Сr2O7 + 2KOH = 2К2СrO4 + Н2O

2K2CrO4 + H2SO4 = K2SO4 + K2Cr2O7 + Н2O

(NH4)2Cr2O7 → t → Cr2O3 + N2 + 4Н2O

Дихромат калия – окислитель в кислой среде.

К2Сr2O7 + 4H2SO4 + 3Na2SO3 = Cr2(SO4)3 + 3Na2SO4 + K2SO4 + 4H2O

K2Cr2O7 + 4H2SO4 + 3NaNO2 = Cr2(SO4)3 + 3NaNO3 + K2SO4 + 4H2O

K2Cr2O7 + 7H2SO4 + 6KI = Cr2(SO4)3 + 3I2 + 4K2SO4 + 7H2O

K2Cr2O7 + 7H2SO4 + 6FeSO4 = Cr2(SO4)3 + 3Fe2(SO4)3 + K2SO4 + 7H2O

 

9.2. Марганец и его соединения

 

Марганец – серебристо-белый твердый и хрупкий металл. Характерные степени окисления марганца, электронные формулы соответствующих ионов, химические свойства и примеры соединений приведены в таблице.

Получение и свойства марганца

FeO • Mn2O3 + 4CO → t → Fe + 2Mn + 4CO2 (Fe + 2Mn) – ферромарганец

Mn2O3 + 2Al → t → 2Mn + Al2O3 – метод алюминотермии

Mn + 2HCl = MnCl2 + Н2

Mn + 2H2SO4 (конц.) = MnSO4 + SO2 + 2Н2O

ЗMn + 8HNO3 (разб.) = 3Mn(NO3)2 + 2NO + 4Н2O

Свойства соединений марганца (+2)

MnSO4 + 2NaOH = Mn(OH)2↓ + Na2SO4

Mn(OH)2↓ + 2NaOH ≠

Mn(OH)2↓ + H2SO4 = MnSO4 + 2H2O

2Mn(OH)2↓ + O2 = MnO2↓ + 2H2O

Mn(OH)2↓ + 2NaOH + Br2 = MnO2↓ + 2NaBr + 2H2O

Mn(OH)2↓ → t → MnO + H2O↑

2Mn(NO3)2 + 16HNO3 + 5NaBiO3 = 2HMnO4 + 5Bi(NO3)3 + 5NaNO3 + 7H2O

3MnCl2 + 2KClO3 + 12NaOH → сплавление → 3Na2MnO4 + 2KCl + 6NaCl + 6H2O

Свойства соединений марганца (+4)

MnO2 – устойчивый амфотерный оксид, сильный окислитель.

MnO2 + 4HCl = MnCl2 + Cl2 + 2Н2O

3MnO2 + KClO3 + 6KOH → сплавление → 3K2MnO4 + KCl + 3H2O↑

Свойства соединений марганца (+6)

Соединения устойчивы лишь в сильнощелочной среде.

К2MnO4 + 8HCl = MnCl2 + 2Cl2 + 2KCl + 4Н2O

Свойства соединений марганца (+7)

Сильные окислители в кислой среде.

2KMnO4 + 3H2SO4 + 5Na2SO3 = 2MnSO4 + 5Na2SO4 + K2SO4 + 3H2O

2KMnO4 + H2O + 3Na2SO3 = 2MnO2 + 3Na2SO4 + 2KOH

2KMnO4 + 2KOH + Na2SO3 = 2K2MnO4 + Na2SO4 + H2O

2KMnO4 + 8H2SO4 + 10FeSO4 = 2MnSO4 + 5Fe2(SO4)3 + K2SO4 + 8H2O

2KMnO4 + 8H2SO4 + 10KI = 2MnSO4 + 5I2 + 6K2SO4 + 8H2O

2KMnO4 + 3H2SO4 + 5NaNO2 = 2MnSO4 + 5NaNO3 + K2SO4 + 3H2O

2KMnO4 → t → K2MnO4 + MnO2 + O2↑

 

9.3. Железо и его соединения

 

Железо является вторым после алюминия металлом по распространенности в природе. Характерные степени окисления железа, электронные формулы соответствующих ионов, химические свойства и примеры соединений приведены в таблице.

Соединения железа (+8) малохарактерны.

Получение и свойства железа

3Fe2O3 + CO → t → 2Fe3O4 + CO2

Fe3O4 + CO → t → 3FeO + CO2

FeO + CO → t → Fe + CO2

3Fe3O4 + 8Al → t → 9Fe + 4Al2O3

Fe + I2 → t → FeI2

2Fe + ЗCl2 → t → 2FeCl3

4Fe + 3O2 + 2Н2O = 4FeO(OH)↓ (коррозия на воздухе)

Fe + 2HCl = FeCl2 + Н2

Fe + H2SO4 (разб.) = FeSO4 + H2

Fe + 4HNO3 (разб.) = Fe(NO3)3 + NO + 2H2O

Концентрированные серная и азотная кислоты пассивируют железо на холоду. При нагревании реакция идет.

2Fe + 6H2SO4(конц.) → t → Fe2(SO4)3 + 3SO2 + 6Н2O

Fe + 6НNO3(конц.) → t → Fe(NO3)3 + 3NO2 + 3H2O

Свойства соединений железа (+2)

FeO + Н2O ≠

FeO + H2SO4 = FeSO4 + H2O

FeSO4 + 2NaOH = Fe(OH)2↓ + Na2SO4

Гидроксид железа(II) сразу окисляется кислородом воздуха.

4Fe(OH)2↓ + 2Н2O + O2 = 4Fe(OH)3↓

Fe(OH)2↓ + H2SO4 = FeSO4 + 2Н2O

Fe(OH)2↓ + 2NaOH *

FeSO4 + 6KCN = K4[Fe(CN)6] + K2SO4

FeSO4 + K3[Fe(CN)6] = KFe[Fe(CN)6]↓ + K2SO4

Свойства соединений железа (+3)

FeCl3 + 3NaOH = Fe(OH)3↓ + 3NaCl

Fe(OH)3↓ + 3HCl = FeCl3 + 3H2O

Fe(OH)3↓ + NaOH ≠ не идет в разбавленном растворе

Fe(OH)3↓ + NaOH → сплавление → NaFeO2 + 2H2O

FeCl3 + 2HI = 2FeCl2 + I2 + 2HCl

FeCl3 + 6KCN = K3[Fe(CN)6] + 3KCl

FeCl3 + K4[Fe(CN)6] = KFe[Fe(CN)6]↓ + 3KCl

FeCl3 + 3KCNS = Fe(SCN)3 + 3KCl

Свойства соединений железа (+6)

Феррат калия – окислитель.

Fe2O3 + 3KNO3 + 4KOH → сплавление → 2K2FeO4 + 3KNO2 + 2H2O

4K2FeO4 + 10H2SO4(разб.) = 2Fe2(SO4)3 + 3O2↑ + 4K2SO4 + 10H2O

 

9.4. Медь и ее соединения

 

Медь – мягкий красный металл, хорошо проводит теплоту и электрический ток.

Получение и свойства меди

2CuS + 3O2 → t → 2CuO + 2SO2

CuO + CO → t → Cu + CO2

Cu + 2HCl + Н2O2 = CuCl2 + 2Н2O

Cu + 2H2SO4(конц.) = CuSO4 + SO2 + 2Н2O

Cu + 4НЖ)3(конц.) = Cu(NO3)2 + 2NO2 + 2H2O

3Cu + 8HNO3(разб.) = 3Cu(NO3)2 + 2NO + 4H2O

4Cu + O2(недостаток) → 200 °C → 2Cu2O

2Cu + O2(избыток) → 500 °C → 2CuO

2Cu + H2O + CO2 + O2 = (CuOH)2CO3↓ (малахит)

Свойства соединений меди(I)

2Cu2O + O2 → 500 °C → 4CuO

Cu2O + CO → t → 2Cu + CO2

Cu2O + 4(NH3 • Н2O) (конц.) = 2[Cu(NH3)2]OH + 3H2O

Свойства соединений меди(II)

CuO + 2HCl = CuCl2 + Н2O

CuSO4 + 2NaOH = Cu(OH)2↓ + Na2SO4

Cu(OH)2↓ → t → CuO↓ + Н2O

Cu(OH)2↓ + H2SO4 = CuSO4 + 2H2O

Cu(OH)2↓ + NaOH ≠ не идет в растворе

Cu(OH)2↓ + 2NaOH (конц.) → t → Na2[Cu(OH)4]

CuSO4 + 4(NH3 • H2O) = [Cu(NH3)4]SO4 + 4Н2O

[Cu(NH3)4]SO4 + Na2S = CuS↓ + Na2SO4 + 4NH3

2CuSO4 + 2H2O ↔ (CuOH)2SO4 + H2SO4

2CuSO4 + 4KI = 2CuI↓ + I2 + 2K2SO4

2Cu(NO3)2 → t → 2CuO + 4NO2 + O2

 

9.5. Серебро и его соединения

 

3Ag + 4HNO3 (разб.) = 3AgNO3 + NO↑ + 2H2O

2AgNO3 + 2NaOH = Ag2O↓ + H2O + 2NaNO3

AgNO3 + HCl = AgCl↓ + HNO3

AgCl↓ + 2(NH3 • H2O) = [Ag(NH3)2]Cl + 2H2O

[Ag(NH3)2]Cl + 2HNO3 = AgCl↓ + 2NH4NO3

Ag2O + 4(NH3 • Н2O) (конц.) = 2[Ag(NH3)2]OH + 3H2O

2[Ag(NH3)2]OH + CH3CHO + 2H2O = 2Ag↓ + CH3COONH4 + 3(NH3 • H2O)

 

9.6. Цинк и его соединения

 

Получение и свойства цинка

2ZnS + 3O2 → t → 2SO2 + 2ZnO

ZnO + CO → t → Zn + CO2

Zn + 2HCl = ZnCl2 + H2↑

Zn + H2SO4 (разб.) = ZnSO4 + H2↑

4Zn + 5H2SO4 (конц.) = 4ZnSO4 + H2S↑ + 4H2O

Zn + 4НHNO3(конц.) = Zn(NO3)2 + 2NO2↑ + 2H2O

4Zn + 10HNO3(оч. разб.) = 4Zn(NO3)2 + NH4NO3 + 3H2O

Zn + 2NaOH + 2H2O = Na2[Zn(OH)4] + H2↑

Свойства соединений цинка

ZnSO4 + 2NaOH = Zn(OH)2↓ + Na2SO4

Zn(OH)2↓ + H2SO4 = ZnSO4 + 2H2O

Zn(OH)2↓ + 2NaOH = Na2[Zn(OH)4]

Na2[Zn(OH)4] + 2HCl = Zn(OH)2↓ + 2NaCl + 2H2O

Na2[Zn(OH)4] + 4HCl = ZnCl2 + 2NaCl + 4H2O

Zn(OH)2↓ + 6NH4OH = [Zn(NH3)6](OH)2 + 6H2O

2ZnSO4 + 2H2O ↔ (ZnOH)2SO4 + H2SO4

 

III. Аналитическая химия

 

1. Теоретические основы аналитической химии

 

Чувствительность аналитической реакции. Предел обнаружения, или открываемый минимум, (m) – наименьшая масса вещества, открываемая данной реакцией по данной методике. Измеряется в микрограммах (1 мкг = 10– 6 г).

Предельная концентрация (clim) – наименьшая концентрация определяемого вещества, при которой оно может быть обнаружено в растворе данной реакцией по данной методике. Выражается в г/мл.

Предельное разбавление (Vlim) – объем раствора с предельной концентрацией, в котором содержится 1 г определяемого вещества. Предельное разбавление выражается в мл/г.

Минимальный объем предельно разбавленного раствора (Vmin) – наименьший объем (мл) раствора определяемого вещества, необходимый для его обнаружения данной реакцией.

m = Clim • Vmin • 106,

 

Вычисление рН водных растворов

 

сильных кислот: рН = – lg a (H+) = – lg (c (H+) / f (Н+))

сильных оснований: рН = 14 + lg a (OH¯) = 14 + lg (c (OH¯) f (OH¯))

слабых кислот: рН = – ½(р K кислоты – lg c) = – ½K кислоты – ½ lg c

слабых оснований: рН = 14 – ½р K основания + ½lg c

солей, образованных сильным основанием и слабой кислотой: рН = 7 + ½p K кислоты + ½lg c соли

солей, образованных слабым основанием и сильной кислотой: рН = 7 – ½ K основания – lg c соли

солей, образованных слабым основанием и слабой кислотой: рН = 7 + ½p K кислоты + ½p K основания

кислого буферного раствора:

щелочного буферного раствора:

Вычисление буферной емкости. Емкость буферного раствора определяется количеством сильной кислоты или сильного основания, которое необходимо добавить к 1 л буферного раствора, чтобы изменить его значение рН на единицу.

Гетерогенное равновесие: осадок – насыщенный раствор малорастворимого соединения. Гетерогенное равновесие между осадком малорастворимого соединения и его ионами в насыщенном водном растворе может быть представлено следующим уравнением:

 

Kt m An n ↓ ↔ mKt n + + n An m -

[Kt n +] = m s; [An m -] = n • s

Константа равновесия обратимой реакции осаждения-растворения называется произведением растворимости Ks (или ПР) и выражается следующим образом:

Ks = a (Kt n +) m a (An m -) n = (f (Kt n +) x [Kt n +]) m• (f (An m-)[An m -]) n = (ms)m(ns)n • f (Kt n +) m • f (An n -) n = nnmmsm+n • f (Kt n +) m • f (An m -) n, или Ks = nn • mm • sm+n

Растворимость – это свойство вещества образовывать гомогенные системы с растворителем. Молярная растворимость малорастворимого вещества (s), моль/л, выражается следующим образом:

Зная молярную растворимость соединения Kt m An n, легко вычислить его растворимость в г/л ρ по формуле:

ρ = s • M(Kt m An n)

Массу малорастворимого вещества в любом объеме можно рассчитать по формуле:

m (Kt m An n) = s(Kt m An n) • M(Kt m An n) x Vр-ра

Условие образования и растворения осадка. Осадок не образуется или растворяется, если произведение концентраций ионов осадка в растворе меньше величины произведения растворимости.

[Kt n +] m [An m -] n < Ks (Kt m An n)

Осадок образуется или выпадает, если произведение концентраций ионов осадка в растворе больше величины произведения растворимости.

[Kt n +] m [An m -] n > Ks (Kt m An n).

Равновесия в окислительно-восстановительных системах. Для обратимой окислительно-восстановительной реакции

Oх + nē ↔ Red

Равновесный потенциал Eox/red со стандартным потенциалом редокс-пары Eox/red и активностью окисленной и восстановленной формы связан уравнением Нернста:

где R – универсальная газовая постоянная, равная 8,314 Дж/моль К, Т – температура по шкале Кельвина, К, T – число Фарадея, равное 96485 Кл/моль, а (Ох) – активность окисленной формы, a (Red) – активность восстановленной формы.

При подстановке в уравнение значений универсальной газовой постоянной, числа Фарадея, температуры Т = 298 К и замены натурального логарифма на десятичный получается уравнение для расчета значения равновесного электродного потенциала редокс-пары при 25°C:

Если в окислительно-восстановительных реакциях принимают участие ионы водорода, то уравнение Нернста выглядит следующим образом:

Если окисленная или восстановленная форма окислительно-восстановительной полуреакции является малорастворимым соединением, то в формулу для вычисления равновесного потенциала такой системы входит величина произведения растворимости этого соединения.

Если в окислительно-восстановительной полуреакции окисленной формой является комплексное соединение OxL m, характеризующееся константой устойчивости β(OxL m), то равновесный окислительно-восстановительный потенциал вычисляется по уравнению:

Направление и глубина протекания окислительно-восстановительных реакций. Обратимая окислительно-восстановительная реакция

аОх1 + bRed1 ↔ аОх2 + bRed2 протекает в прямом направлении, если ΔЕ0 = Е0 Ox1/Red2 – Е0 Ox2/Red1 > 0, И В обратном направлении, если ΔЕ0 < 0.

Глубина протекания реакции, т. е. степень превращения исходных веществ в продукты реакции, определяется константой равновесия.

Для окислительно-восстановительной реакции константа равновесия с потенциала-

ми участвующих в реакции редокс-пар связана уравнением:

 

2. Качественные реакции катионов

 

 

Кислотно-основная классификация катионов

 

I группа: Li+, NH4+, Na+, K+

групповой реагент – отсутствует.

Свойства соединений: хлориды, сульфаты и гидроксиды растворимы в воде.

II группа: Ag+, Hg22+, Pb2+

групповой реагент – HCl (с (HCl) = 2 моль/л).

Свойства соединений: хлориды не растворимы в воде.

III группа: Са2+, Ва2+, Sr2+, Pb2+

групповой реагент – H2SO4 (c (H2SO4) = 2 моль/л).

Свойства соединений: сульфаты не растворимы в воде.

IV группа: Al3+, Cr3+, Zn2+, As(III), As(IV), Sn2+

групповой реагент – NaOH (c (NaOH) = 2 моль/л), избыток.

Свойства соединений: гидроксиды растворимы в избытке NaOH.

V группа: Bi3+, Fe2+, Fe3+, Mn2+

групповой реагент – NH3 (конц.).

Свойства соединений: гидроксиды нерастворимы в избытке NaOH и NH3.

VI группа: Cd2+, Co2+, Cu2+, Ni2+

групповой реагент – NH4OH (конц.).

Свойства соединений: гидроксиды нерастворимы в избытке NaOH, но растворимы в избытке NH3.

 

I аналитическая группа

 

 

Ион: Li+

 

1. Реактив, условия: Na2HPO4, конц. NH3.

Уравнение реакции:

3LiCl + Na2HPO4 = Li3PO4↓ + 2NaCl +HCl

Наблюдения: белый осадок.

2. Реактив, условия: Na2CO3, рН ≈ 7

Уравнение реакции: 2LiCl + Na2CO3 = Li2CO3↓ + 2NaCl

Наблюдения: белый осадок.

 

Ион: NH4+

 

1. Реактив, условия: NaOH, газовая камера.

Уравнение реакции:

NH4Cl + NaOH = NaCl + Н2O + NH3↑

Наблюдения: запах аммиака, фенолфталеиновая бумага краснеет.

2. Реактив, условия: реактив Несслера (смесь K2[HgI4] и KOH)

Уравнение реакции:

NH3 + 2K2[HgI4] + ЗKOH = [OHg2NH2]I↓ + 7KI + 2Н2O

Наблюдения: красно-бурый осадок.

 

Ион: Na+

 

1. Реактив, условия: K[Sb(OH)6], насыщенный раствор, холод, рН ≈ 7, мешают NH4+, Li+

Уравнение реакции:

NaCl + K[Sb(OH)6] = Na[Sb(OH)6]↓ + KCl

Наблюдения: белый осадок.

2. Реактив, условия: Zn(UO2)3(CH3COO)8, предметное стекло, CH3COOH, мешает Li+

Уравнение реакции:

NaCl + Zn(UO2)3(CH3COO)8 + CH3COOK + 9Н2O = NaZn(UO2)3(CH3COO)9 9Н2O↓ + KCl

Наблюдения: желтые кристаллы октаэд-рической и тетраэдрической форм.

 

Ион: К+

 

1. Реактив, условия: Na3[Co(NO2)6], слабо-кислая среда, мешают NH4+, Li+.

Уравнение реакции:

2KCl + Na3[Co(NO2)6] = K2Na[Co(NO2)6]↓ + 2NaCl

Наблюдения: желтый осадок.

2. Реактив, условия: NaHC4H4O6, рН ≈ 7, мешает NH4+.

Уравнение реакции: 2KCl + NaHC4H4O6 = K2C4H4O6↓ + NaCl + HCl

Наблюдения: белый осадок.

 

II аналитическая группа

 

 

Ион: Ag+

 

1. Реактив, условия: HCl, NH3 • Н2O

Уравнения реакций:

AgNO3 + HCl = AgCl↓ + HNO3

AgCl↓ + 2NH3 • H2O = [Ag(NH3)2]Cl + 2H2O

[Ag(NH3)2]Cl + 2HNO3 = AgCl↓ + 2NH4NO3

Наблюдения: белый осадок, растворимый в избытке аммиака и выпадающий вновь при добавлении азотной кислоты (использовать спец. слив!).

2. Реактив, условия: К2СrO4, рН = 6,5–7,5.

Уравнение реакции:

2AgNO3 + K2CrO4 = Ag2CrO4↓ + 2KNO3 Наблюдения: кирпично-красный осадок.

 

Ион: Hg2+

 

1. Реактив, условия: HCl, NH3 • Н2O

Уравнения реакций:

Hg2(NO3)2 + 2HCl = Hg2Cl2↓ + 2HNO3

Hg2Cl2↓ + 2NH3 • H2O = [HgNH2]Cl↓ + Hgi↓ + NH4Cl + 2H2O

Наблюдения: белый осадок, при добавлении аммиака – чернеет (использовать спец. слив!).

2. Реактив, условия: Cu (металл.)

Уравнение реакции:

Hg2(NO3)2 + Cu = Hg↓ + Cu(NO3)2

Наблюдения: образование амальгамы.

 

Ион: РЬ2+

 

1. Реактив, условия: HCl

Уравнение реакции:

Pb(NO3)2 + 2HCl = РЬCl2↓ + 2HNO3

Наблюдения: белый осадок, растворимый в горячей воде.

2. Реактив, условия: KI

Уравнение реакции:

РЬCl2 + 2KI = РCl2↓ + 2KCl

Наблюдения: ярко-желтый осадок.

 

III аналитическая группа

 

 

Ион: Ва2+

 

1. Реактив, условия: H2SO4

Уравнение реакции:

ВaCl2 + H2SO4 = BaSO4↓ + 2HCl

Наблюдения: белый осадок, нерастворимый в HNO3.

2. Реактив, условия: К2СrO4 или К2Сr2O7

Уравнение реакции:

ВaCl2 + К2СrO4 = ВаСrO4↓ + 2KCl

Наблюдения: желтый осадок, нерастворимый в CH3COOH, растворимый в HNO3.

 

Ион: Са2+

 

1. Реактив, условия: H2SO4 и С2Н5OH

Уравнение реакции:

CaCl2 + H2SO4 + 2Н2O = CaSO4 • 2H2O↓ + 2HCl

Наблюдения: белые кристаллы гипса.

2. Реактив, условия: (NH4)2C2O4

Уравнение реакции:

CaCl2 + (NH4)2C2O4 = СаС2O4↓ + 2NH4Cl

Наблюдения: белый осадок, нерастворимый в CH3COOH, растворимый в HNO3.

 

Ион: Sr2+

 

1. Реактив, условия: «гипсовая вода»

Уравнение реакции:

SrCl2 + CaSO4 → t → SrSO4↓ + CaCl2

Наблюдения: белый осадок.

 

IV аналитическая группа

 

 

Ион: Al3+

 

1. Реактив, условия: ализарин С14Н6O2(OH)2, NH3 • Н2O (NH4Cl)

Уравнения реакций:

AlCl3 + 3NH3 • H2O = Al(OH)3↓ + 3NH4Cl

Наблюдения: Розовый лак на фильтровальной бумаге.

2. Реактив, условия: алюминон, CH3COOH

Уравнение реакции: алюминон с Al(OH)3 образует красный лак, которому приписывается следующая формула:

Наблюдения: розовый лак.

 

Ион: Сr3+

 

Реактив, условия: NaOH, H2O2, нагревание, амиловый спирт, H2SO4

Уравнение реакции:

2СrCl3 + 10NaOH + ЗН2O2 = 2К2СrO4 + 6NaCl + 8Н2O

Наблюдения: желтый раствор, при добавлении амилового спирта, H2SO4 наблюдается синее кольцо.

 

Ион: Zn2+

 

Реактив, условия: дитизон С6Н5—NH—N=C(SH)—N=N—C6H5 (дифенилкарбазон), CHCl3, рН = 2,5-10, мешают Pb2+, Cd2+, Sn2+

Уравнения реакций:

Наблюдения: соль красного цвета, растворимая в хлороформе (CHCl3).

 

Ион: AsO33-

 

Реактив, условия: AgNO3

Уравнение реакции:

Na3AsO3 + 3AgNO3 = Ag3AsO3↓ + 3NaNO3

Наблюдения: желтый аморфный осадок, растворим в концентрированном растворе аммиака и в азотной кислоте (использовать спец. слив!).

 

Ион: AsO43-

 

1. Реактив, условия: магнезиальная смесь (MgCl2 + NH4Cl + NH3), мешает PO43-

Уравнение реакции:

NH4Cl + MgCl2 + Na3AsO4 = NH4MgAsO4↓ + 3NaCl

Наблюдения: белый кристаллический осадок (использовать спец. слив!).

2. Реактив, условия: AgNO3

Уравнение реакции:

Na3AsO4 + 3AgNO3 = Ag3AsO4↓ + 3NaNO3

Наблюдения: осадок шоколадного цвета (использовать спец. слив!).

3. Реактив, условия: (NH4)2S или H2S, конц. HCl

Уравнение реакции:

5H2S + 2Na3AsO4 + 6HCl = As2S5↓ + 8Н2O + 6NaCl

Наблюдения: осадок желтого цвета (использовать спец. слив!).

 

Ион: Sn2+

 

1. Реактив, условия: Bi(NO3)3, pH > 7

Уравнения реакций:

SnCl2 + NaOH = Sn(OH)2↓ + 2NaCl

Sn(OH)2 + 2NaOH(изб.) = Na2[Sn(OH)4] + 2NaCl

3Na2[Sn(OH)4] + 2Bi(NO3)3 + 6NaOH = 2Bi + 3Na2[Sn(OH)6] + 6NaNO3

Наблюдения: осадок черного цвета.

2. Реактив, условия: HgCl2, конц. HCl

Уравнения реакций:

SnCl2 + 2HCl = H2[SnCl4]

H2[SnCl4] + 2HgCl2 = H2[SnCl6] + Hg2Cl2↓

Наблюдения: осадок белого цвета, который постепенно чернеет вследствие образования металлической ртути.

 

V аналитическая группа

 

 

Ион: Bi3+

 

1. Реактив, условия: Na2[Sn(OH)4], pH >7

Уравнение реакции:

2Bi(NO3)3 + 3Na2[Sn(OH)4] + 6NaOH = 2Bi↓ + 3Na2[Sn(OH)6] + 6NaNO3

Наблюдения: осадок черного цвета.

2. Реактив, условия: KI, рН < 7

Уравнение реакции:

Bi(NO3)3 + 3KI = Bil3↓ + 3KNO3

Наблюдения: осадок черного цвета, растворяется в избытке KI с образованием оранжевого раствора K[BiI4]. При разбавлении водой опять выпадает черный осадок BiI3, который затем гидролизуется с образованием оранжевого осадка ВiOI.

 

Ион: Fe2+

 

1. Реактив, условия: K3[Fe(CN)6]



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: