Решение со знаком ''плюс''.




В точке k = 0:

 

(40)

 

На границе зоны Бриллюэна:

 

(41)

 

Групповая скорость этой ветви ∂ ω /∂ k равна нулю как на границе зоны Бриллюэна, так и при k = 0.

Эта ветвь целиком лежит выше акустической ветви: ее минимальная частота больше максимальной частоты акустических колебаний . Таким образом, в цепочке могут распространяться волны в частотами от 0 до и от до . Интервал частот является ''запрещенной зоной'': волн с такими частотами не существует. Относительная ширина этого интервала тем больше, чем больше отношение масс M 2/ M 1.

Чтобы понять, что представляют собой длинноволновые колебания этой ветви, найдем отношение амплитуд колебаний B / A при k = 0 с помощью (36):

 

(42)

 

Мы видим, что атомы в каждой ячейке движутся в противофазе, то сближаясь, то удаляясь друг от друга, причем одновременно во всех ячейках (если k = 0). Амплитуда движения легкого атома больше амплитуды тяжелого в M 2/ M 1 раз, т. е. центр тяжести ячейки остается на месте.

 

Рис. 3.3. Амплитуды атомов цепочки в случае длинноволновых оптических колебаний.

 

Если атомы заряжены, то при колебаниях такого типа каждая ячейка представляет собой переменный дипольный момент. Дипольные моменты взаимодействуют с электромагнитным полем, и колебания легко возбуждаются электромагнитными волнами соответствующих частот. В связи с этим, вся ветвь колебаний называется оптической.

При длинноволновых акустических колебаниях атомы ячейки движутся в фазе и никакого дипольного момента не возникает. Поэтому акустические колебания с электромагнитным полем взаимодействуют слабо.

Энергия длинноволнового оптического фонона имеет тот же порядок величины, что и энергия фонона акустического колебания с максимальной частотой, которую мы оценили в 0,05 эВ. Энергии оптических фононов большинства полупроводниковых кристаллов лежат в диапазоне 0,03ч 0,1 эВ.

Посмотрим теперь, как колеблются атомы, когда длина волны минимальна, т. е. когда волновой вектор лежит на границе зоны Бриллюэна.

В случае акустических колебаний ω 2 = 2 γ / M 2, коэффициент при B во втором уравнении системы (25) обращается в ноль, откуда следует что A = 0.

В случае оптических колебаний ω 2 = 2 γ / M 1, и из первого уравнения (25) следует что B = 0.

Таким образом, при k = π / a в случае акустических волн колеблются тяжелые атомы, а легкие неподвижны, в случае оптических, наоборот: колеблются легкие, тяжелые стоят на месте.

Обобщим теперь полученные результаты. Нетрудно показать, что если примитивная ячейка одномерной цепочки содержит l атомов, то спектр колебаний состоит из l ветвей, одна из которых акустическая, а остальные – оптические.

Мы рассматривали бесконечную цепочку, не накладывая никаких ограничений на длины волн упругих колебаний. В результате, мы пришли к выводу, что в цепочке могут распространяться колебания с любыми волновыми векторами, лежащими в первой зоне Бриллюэна. (Было показано, что из-за дискретности цепочки волновые вектора, отличающиеся на произвольный вектор обратной решетки, описывают одни и те же колебания. Поэтому можно брать волновой вектор из любой зоны Бриллюэна. Естественней всего описывать колебание наименьшим волновым вектором, т.е. вектором из первой зоны Бриллюна.)

Чтобы иметь дело не с непрерывным, а с дискретным набором волновых векторов, можно потребовать, чтобы отклонение атомов от равновесия было периодической функцией: u (xn) = u (xn + L). Иными словами — поставить граничные условия Борна-Кармана. Период L должен быть кратен постоянной решетки цепочки.

Условиям Борна-Кармана удовлетворяют только гармонические колебания с ''разрешенными'' волновыми векторами kn = 2 π n / L. Нетрудно подсчитать, что в зоне Бриллюэна размещается L / a разрешенных волновых векторов, т. е. ровно столько, сколько примитивных ячеек укладывается на длине L. (Волновым векторам – π / a и π / a соответствует одно и то же колебание и поэтому считаем эти два значения за одно). Мы уже упоминали выше об этом свойстве зоны Бриллюэна.

Так как колебание однозначно определяется волновым вектором и ветвью, то различных колебаний столько, сколько атомов содержит цепочка. Это общее свойство линейных колебательных систем: количество независимых колебаний (нормальных мод) равно числу степеней свободы системы.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-11-01 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: