Глава 2. Фононы. Фононный газ




Колебаниям решетки, согласно квантовой механике, можно сопоставить квазичастицы – фононы. Каждому колебанию соответствует одно состояние фонона с импульсом и энергией .

Минимальная порция энергии которую может поглотить или испустить кристаллическая решетка при тепловых колебаниях соответствует на этом рисунке переходу с одного энергетического уровня на другой равна и называется фононом.

Таким образом между светом и тепловыми колебаниями кристаллической решетки можно провести аналогию – упругие волны рассматриваются как распространение неких квазиупругих частиц – фононов.

Р. Паерлс в 1929 году ввел в теорию Дебая квантовые (фононные) явления и показал, что тепловое сопротивление решетки обусловлено взаимодействием фононов. Фонон, в отличии от обычных частиц, может существовать лишь в некоторой среде, которая пребывает в состоянии теплового возбуждения. Нельзя вообразить фонон, который распространялся бы в вакууме, поскольку он описывает квантовый характер тепловых колебаний решетки и навечно замкнут в кристалле. Корпускулярный аспект малых колебаний атомов решетки кристалла приводит к понятию фонона, и распространение упругих тепловых волн в кристалле можно рассматривать как перенесение фононов.

Фононы являются бозе-частицами: число фононов, соответствующих определенному колебанию (число фононов одном состоянии), может быть сколь угодно большим. В состоянии термодинамического равновесия среднее число фононов njk ветви j с волновым вектором зависит только от энергии фонона (частоты колебания):

 

(31).

 

Здесь k – постоянная Больцмана. С точки зрения квантовой (да и классической) механики, нормальные колебания решетки ведут себя как набор независимых гармонических осцилляторов. Роль координаты осциллятора играет при этом амплитуда колебания, число фононов является уровнем энергии осциллятора.

На каждое колебание приходится средняя энергия . Строго говоря, к этой энергии надо прибавить энергию основного состояния колебания (энергию нулевых колебаний): как и у обычного гармонического осциллятора она равна . Но энергией нулевых колебаний кристалл обладает всегда, и мы просто примем ее за начало отсчета.

При высоких температурах, kb T >> ħ ω, число фононов пропорционально температуре: (32).

Средняя энергия колебания при этом равна kT. Это известный результат классической статистической механики для средней энергии гармонического осциллятора. Таким образом, пока температура превосходит энергию фонона, квантовые эффекты не играют роли.

Они играют существенную роль при низких температурах. Если k T << ħ ω, то среднее число фононов экспоненциально мало:

 

(33).

 

Можно сказать, что колебания, частота которых превосходит величину kT /ħ, ''вымерзают''. Энергия колебания не может быть меньше энергии одного фонона ħ ωjk а энергия фонона много больше характерной тепловой энергии kT, поэтому такие колебания практически не возбуждаются.




Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-11-01 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: