Практическая работа: используя видеоурок и выше изложенный материал составить конспект в тетради




Заключительная часть.

Уборка рабочих мест.

 

 

Тема урока: Тенденции развития электротехники и электроэнергетики.

Цели урока:

· Познакомить учащихся с физическими основами производства передачи и использования электрической энергии

· Способствовать формированию у учащихся информационной и коммуникативной компетентностей

· Познакомить учащихся с производством и использованием электрической энергии в России. (в Мордовии)

· Оборудование: компьютер, мультимедийный проектор, экран, авторские презентации: «Производство, передача и использование электрической энергии»/

План урока

Организационный момент

Мотивационный момент

Объяснение нового материала и практическая работа в тетради

· Промышленная энергетика (ГЭС, ТЭС, АЭС)

· Альтернативная энергетика (ГеоТЭС, СЭС, ВЭС, ПЭС)

· Передача электрической энергии

· Эффективное использование электрической энергии

· Домашнее задание

Ход урока

Организационны момент

Учитель:
Представить сегодня нашу жизнь без электрической энергии невозможно. Электроэнергетика вторглась во все сферы деятельности человека: промышленность и сельское хозяйство, науку и космос. Немыслим без электроэнергии и наш быт. Столь широкое применение электроэнергии объясняется ее преимуществами перед другими видами энергии. Так, электроэнергию можно получать за счет других разнообразных видов энергии (воды, ветра, солнца и т.д.), легко превращать в другие виды энергии, без больших потерь передавать на большие расстояния, достаточно просто и с высоким кпд преобразовывать, дробить на порции любой величины.

· Огромную роль электроэнергия играет в транспортной промышленности. Электротранспорт не загрязняет окружающую среду. Большое количество электроэнергии потребляет электрифицированный железнодорожный транспорт, что позволяет повышать пропускную способность дорог за счет увеличения скорости движения поездов.

· Электроэнергия в быту является основным фактором обеспечения комфортабельной жизни людей. Уровень развития электроэнергетики отражает уровень развития производительных сил общества и возможности научно-технического прогресса.

Электроэнергия была и остается главной составляющей жизни человека Главные вопросы – сколько энергии нужно человечеству? Какой будет энергетика ХХІ века? Чтобы дать ответы на эти вопросы необходимо знать основные способы получения электроэнергии, изучить проблемы и перспективы современного производства электроэнергии в России, но и на территории Красноярского края.

Преобразования энергии различных видов в электрическую энергию происходит на электростанциях. В зависимости от вида преобразуемой энергии электростанции могут быть разделены на следующие основные типы:

· Электростанции промышленной энергетики: ГЭС, ТЭС, АЭС

· Электростанции альтернативной энергетики: ПЭС, СЭС, ВЭС, ГеоТЭС

 

Рассмотрим физические основы производства электроэнергии на электростанциях.

 

1: Гидроэлектростанции (ГЭС)

Гидроэлектростанция представляет собой комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию.
На ГЭС электроэнергию получают, используя энергию воды, перетекающей с высшего уровня к низшему уровню и вращающей при этом турбину. Плотина – самый важный и самый дорогостоящий элемент ГЭС. Вода перетекает с верхнего бьефа в нижний бьеф по специальным трубопроводам, либо по выполненным в теле плотины каналам и приобретает большую скорость. Струя воды поступает на лопасти гидротурбины. Ротор гидротурбины приводится во вращение под действием центробежной силы струи воды. Вал турбины соединяется с валом электрического генератора, и при вращении ротора генератора механическая энергия ротора преобразуется в электрическую энергию.
Важнейшая особенность гидроэнергетических ресурсов по сравнению с топливно-энергетическими ресурсами – их непрерывная возобновляемость. Отсутствие потребности в топливе для ГЭС определяет низкую себестоимость вырабатываемой на ГЭС электроэнергии. Однако гидроэнергетика не безвредна для окружающей среды. При постройке плотины образуется водохранилище. Вода, залившая огромные площади, необратимо изменяет окружающую среду. Подъем уровня реки плотиной может вызвать заболоченность, засоленность, изменения прибрежной растительности и микроклимата. Поэтому так важно создание и использование экологически безвредных гидротехнических сооружений.

2: Теплоэлектростанции (ТЭС)

Тепловая электростанция (ТЭС) – электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Основными видами топлива для ТЭС являются природные ресурсы – газ, уголь, торф, горючие сланцы, мазут. Тепловые электростанции разделяются на две группы: конденсационные и теплофикационные или теплоцентрали (ТЭЦ). Конденсационные станции снабжают потребителей только электрической энергией. Их сооружают вблизи залежей местного топлива с тем, чтобы не возить его на большие расстояния. Теплоцентрали снабжают потребителей не только электрической энергией, но и теплом – водяным паром или горячей водой, поэтому ТЭЦ сооружают поблизости от приемников теплоты, в центрах промышленных районов и крупных городов для уменьшения протяженности теплофикационных сетей. Топливо транспортируют на ТЭЦ из мест его добычи. В машинном зале ТЭС установлен котел с водой. За счет тепла, образующегося в результате сжигания топлива, вода в паровом котле нагревается, испаряется, а образовавшийся насыщенный пар доводится до температуры 550°С и под давлением 25 МПа поступает по паропроводу в паровую турбину, назначение которой превращать тепловую энергию пара в механическую энергию. Энергия движения паровой турбины преобразуется в электрическую энергию генератором, вал которого непосредственно соединен с валом турбины. После паровой турбины водяной пар, имея уже низкое давление и температуру около 25°С, поступает в конденсатор. Здесь пар с помощью охлаждающей воды превращается в воду, которая с помощью насоса снова подается в котел. Цикл начинается снова. ТЭС работают на органическом топливе, но это, к сожалению, невосполнимые природные ресурсы. К тому же, работа ТЭС сопровождается экологическими проблемами: при сгорании топлива происходит тепловое и химическое загрязнение среды, что оказывает губительное воздействие на живой мир водоемов и качество питьевой воды

 

 

3: Атомные электростанции (АТС)

Атомная электростанция (АЭС) – электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую энергию. Атомные электростанции действуют по такому же принципу, что и тепловые электростанции, но используют для парообразования энергию, получающуюся при делении тяжелых атомных ядер (урана, плутония). В активной зоне реактора протекают ядерные реакции, сопровождающиеся выделением огромной энергии. Вода, соприкасающаяся в активной зоне реактора с тепловыделяющими элементами, забирает у них тепло и передает это тепло в теплообменнике также воде, но уже не представляющей опасности радиоактивного излучения. Поскольку вода в теплообменнике превращается в пар, его называют парогенератором. Горячий пар поступает в турбину, преобразующую тепловую энергию пара в механическую энергию. Энергия движения паровой турбины преобразуется в электрическую энергию генератором, вал которого непосредственно соединен с валом турбины. АЭС, являющиеся наиболее современным видом электростанций, имеют ряд существенных преимуществ перед другими видами электростанций: не требуют привязки к источнику сырья и собственно могут быть размещены в любом месте, при нормальном режиме функционирования считаются экологически безопасными. Но при авариях на АЭС возникает потенциальная опасность радиационного загрязнения среды. Кроме того существенной проблемой остается утилизация радиоактивных отходов и демонтаж отслуживших свой срок АЭС.

Учитель:
Альтернативная энергетика — совокупность перспективных способов получения энергии, которые распространены, не так широко, как традиционные, однако представляют интерес из-за выгодности их использования при низком риске причинения вреда экологии района. Альтернативный источник энергии — способ, устройство или сооружение, позволяющее получать электрическую энергию (или другой требуемый вид энергии) и заменяющий собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле. Цель поиска альтернативных источников энергии — потребность получать её из энергии возобновляемых или практически неисчерпаемых природных ресурсов и явлений.

4: Приливные электростанции (ПЭС)

Использование энергии приливов началось еще в ХІ веке, когда на берегах Белого и Северного морей появились мельницы и лесопилки. Два раза в сутки уровень океана то поднимается под действием гравитационных сил Луны и Солнца, притягивающих к себе массы воды. Вдали от берега колебания уровня воды не превышают 1 м, но у самого берега они могут достигать 13-18 метров. Для устройства простейшей приливной электростанции (ПЭС) нужен бассейн – перекрытый плотиной залив или устье реки. В плотине имеются водопропускные отверстия и установлены гидротурбины, которые вращают генератор. Считается экономически целесообразным строительство приливных электростанций в районах с приливными колебаниями уровня моря не менее 4 метров. В приливных электростанциях двустороннего действия турбины работают при движении воды из моря в бассейн и обратно. Приливные электростанции двустороннего действия способны вырабатывать электроэнергию непрерывно в течение 4-5 часов с перерывами в 1-2 часа четыре раза в сутки. Для увеличения времени работы турбин существуют более сложные схемы – с двумя, тремя и большим количеством бассейнов, однако стоимость таких проектов весьма высока. Недостаток приливных электростанций в том, что они строятся только на берегу морей и океанов, к тому же они развивают не очень большую мощность, да и приливы бывают всего лишь два раза в сутки. И даже они экологически не безопасны. Они нарушают нормальный обмен соленой и пресной воды и тем самым – условия жизни

 

 

морской флоры и фауны. Влияют они и на климат, поскольку меняют энергетический потенциал морских вод, их скорость и территорию перемещения.

5: Ветряные электростанции (ВЭС)

Энергия ветра – это косвенная форма солнечной энергии, являющаяся следствием разности температур и давлений в атмосфере Земли. Около 2% поступающей на Землю солнечной энергии превращается в энергию ветра. Ветер – возобновляемый источник энергии. Его энергию можно использовать почти во всех районах Земли. Получение электроэнергии от ветросиловых установок является чрезвычайно привлекательной, но вместе с тем технически сложной задачей. Трудность заключается в очень большой рассеянности энергии ветра и в его непостоянстве. Принцип действия ветряных электростанций прост: ветер крутит лопасти установки, приводя в движение вал электрогенератора. Генератор вырабатывает электрическую энергию, и, таким образом, энергия ветра превращается в электрический ток. Производство ВЭС очень дешево, но их мощность мала, и их работа зависит от погоды. К тому же они очень шумны, поэтому крупные установки даже приходится на ночь отключать. Помимо этого, ветряные электростанции создают помехи для воздушного сообщения, и даже для радиоволн. Применение ВЭС вызывает локальное ослабление силы воздушных потоков, мешающее проветриванию промышленных районов и даже влияющее на климат. Наконец, для использования ВЭС, необходимы огромные площади много больше, чем для других типов электрогенераторов. И все же изолированные ВЭС с тепловыми двигателями как резерв и ВЭС, которые работают параллельно с тепло – и гидростанциями, должны занять видное место в энергоснабжении тех районов, где скорость ветра превышает 5 м/с.

6: Геотермальные электростанции (Гео ТЭС)

Геотермальная энергия – это энергия внутренних областей Земли. Извержение вулканов наглядно свидетельствует об огромном жаре внутри планеты. Ученые оценивают температуру ядра Земли в тысячи градусов Цельсия. Геотермальное тепло – это тепло, содержащееся в подземной горячей воде и водяном паре, и тепло нагретых сухих пород. Геотермальные тепловые электростанции (ГеоТЭС) преобразуют внутреннее тепло Земли (энергию горячих пароводяных источников) в электрическую энергию. Источниками геотермальной энергии могут быть подземные бассейны естественных теплоносителей – горячей воды или пара. По существу, это непосредственно готовые к использованию «подземные котлы», откуда воду или пар можно добыть с помощью обычных буровых скважин. Полученный таким способом природный пар после предварительной очистки от газов, вызывающих разрушение труб, направляется в турбины, соединенные с электрогенераторами. Использование геотермальной энергии не требует больших издержек, т.к. в данном случае речь идет об уже «готовых к употреблению», созданных самой природой источниках энергии. К недостаткам ГеоТЭС относится возможность локального оседания грунтов и пробуждения сейсмической активности. А выходящие из-под земли газы создают в окрестностях немалый шум и могут, к тому же, содержать отравляющие вещества. Кроме того, ГеоТЭС построить можно не везде, потому что для ее постройки необходимы геологические условия.

7: Солнечные электростанции (СЭС)

Солнечная энергия – наиболее грандиозный, дешевый, но, и, пожалуй, наименее используемый человеком источник энергии. Преобразование энергии солнечного излучения в электрическую энергию осуществляется с помощью солнечных электростанций. Различают термодинамические СЭС, в которых солнечная энергия сначала преобразуется в тепловую, а затем в электрическую; и фотоэлектрические станции, непосредственно преобразующие солнечную энергию в электрическую энергию. Фотоэлектрические станции

 

 

бесперебойно снабжают электроэнергией речные бакены, сигнальные огни, системы аварийной связи, лампы маяков и многие другие объекты, расположенные в труднодоступных местах (слайд №19). По мере совершенствования солнечных батарей они будут находить применение в жилых домах для автономного энергоснабжения (отопления, горячего водоснабжения, освещения и питания бытовых электроприборов). Солнечные электростанции обладают заметным преимуществом перед станциями других типов: отсутствием вредных выбросов и экологической чистотой, бесшумностью в работе, сохранением в неприкосновенности земных недр.

8: Передача электроэнергии на расстояние

Электроэнергия производится вблизи источников топлива или гидроресурсов, в то время как ее потребители находятся повсеместно. Поэтому возникает необходимость в передаче электроэнергии на большие расстояния. Рассмотрим принципиальную схему передачи электроэнергии от генератора к потребителю. Обычно генераторы переменного тока на электростанциях вырабатывают напряжение, не превышающее 20 кВ, так как при более высоких напряжениях резко возрастает возможность электрического пробоя изоляции в обмотке и в других частях генератора. Для сохранения передаваемой мощности напряжение в ЛЭП должно быть максимальным, поэтому на крупных электростанциях ставят повышающие трансформаторы. Однако напряжение в линии электропередачи ограничено: при слишком высоком напряжении между проводами возникают разряды, приводящие к потерям энергии. Для использования электроэнергии на промышленных предприятиях требуется значительное снижение напряжения, осуществляемое с помощью понижающих трансформаторов. Дальнейшее снижение напряжения до величины порядка 4 кВ необходимо для электрораспределения по местным сетям, т.е. по тем проводам, которые мы видим на окраинах наших городов. Менее мощные трансформаторы снижают напряжение до 220 В (напряжение, используемое большинством индивидуальных потребителей).

9: Эффективное использование электроэнергии

Электроэнергия занимает существенное место в статье расходов каждой семьи. Ее эффективное использование позволит значительно снизить издержки. Все чаще в наших квартирах «прописываются» компьютеры, посудомоечные машины, кухонные комбайны. Поэтому и плата за электроэнергию весьма значительна. Возросшее энергопотребление приводит к дополнительному потреблению невозобновляемых природных ресурсов: уголь, нефть, газ. При сжигании топлива в атмосферу выбрасывается углекислый газ, что приводит к пагубным климатическим изменениям. Экономия электричества позволяет сократить потребление природных ресурсов, а значит, и снизить выбросы вредных веществ в атмосферу.
Четыре ступени энергосбережения

· Не забывайте выключать свет.

· Использовать энергосберегающие лампочки и бытовую технику класса А.

· Хорошо утеплять окна и двери.

· Установить регуляторы подачи тепла (батареи с вентилем).

 

 

Домашнее задание: в тетради дать характеристику всем видам электростанций

 



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2021-12-15 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: