Угол между прямой лининей и пл. проекций определяется как угол между прямой и ее проекцией на эту плоскость.
φ1 — угол наклона отрезка АВ к плоскости проекций П1;
φ2 — угол наклона отрезка АВ к плоскости проекций П2.
17.взаимное пересечение двух многогранников. При построении линии пересечения многогранников применяют два способа и их комбинации.
1. Строят точки пересечения ребер одного многогранника с гранями другого и ребер второго с гранями первого. Через построенные точки в определенной последовательности приводят ломаную линию пересечения данных многогранников. При этом отрезки прямых проводят лишь через те построенные точки, которые лежат в одной и той же грани.
2. Строят отрезки прямых, по которым грани одной поверхности пересекают грани другой. Эти отрезки являются звеньями ломаной линии пересечения многогранных поверхностей между собой.
16. Пересечение прямой с поверхностью многогранника. Прямая с многогранной поверхностью может не иметь точек пересечения, может касаться в одной точке и может пересекать многогранную поверхность в нескольких точках, причем четное количество раз. Если многогранник выпуклый, то существует только две точки пересечения прямой с многогранной поверхностью.
Рассмотрим общий алгоритм решения этой задачи на следующем примере (рис. 6.7). Дана трехгранная призма и прямая а — общего положения. Требуется найти точки пересечения M и N.
Алгоритм построения точек пересечения прямой с многогранной поверхностью:
Заключаем прямую a во вспомогательную плоскость s: a s.
1. Плоскость s пересекает многогранник по ломаной KLP.
2. Ломаная KLP пересекается с прямой a в точках N и M. Точки N и M — искомые точки пересечения прямой a с многогранником.
|
9. Способы задания плоскостей. Плоскости частного и общего положения на эпюре Монжа.
Плоскостью называется множество точек равноудалённых от двух точек пространства. Плоскость задается следующим образом: 1)проекциями трех точек, не лежащих на одной прямой; 2) проекцией прямой и точки, не лежащей на прямой; 3) проекцией плоской фигуры; 4) проекциями двух прямых, которые пересекаются; 5) проекциями двух параллельных прямых; 6) следами плоскости (линия пересечения заданной плоскости с плоскостью проекций называется следом). Плоскости относительно плоскостей проекций могут занимать общее и частное положения
. 10Плоскость частного положения..Плоскости, не перпендикулярные ни одной из плоскостей проекций, называется плоскостью общего положения. Плоскости частного положения делятся на проецирующие плоскости, перпендикулярные к одной из плоскостей проекций, и на плоскости, параллельные одной из плоскостей проекций. Проецирующие плоскости делятся на: 1) горизонтально-проецирующие, перпендикулярные к плоскости проекций П1; фронтально-проецирующие, перпендикулярные к плоскости проекций П2; профильно-проецирующие, перпендикулярные к плоскости проекций П3. Проецирующие прямые обладают собирательным свойством, а именно: все геометрические образы, принадлежащие плоскости, проецируются в линию на ту плоскость, перпендикулярно которой она размещена. Плоскости, параллельные плоскостям проекций, делятся на: горизонтальные, фронтальные, профильные.