Проверка на статистическую значимость коэффициентов уравнения регрессии и корреляции.




Качество подбора функции регрессии можно оценить с помощью стандартных ошибок или оценок параметров регрессии. Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитывается t-критерий Стьюдента и доверительные интервалы каждого из показателей. Выдвигается гипотеза Н0 о случайной природе показателей, т.е. о незначимом их отличии от нуля. Оценка значимости коэффициентов регрессии и корреляции с помощью t-критерия Стьюдента проводится путем сопоставления их значений с величиной стандартного отклонения, т.е.:

tb = b / Sb , ta = a / Sa, tR = R / SR.

Стандартные ошибки параметров линейной регрессии и коэффициента корреляции определяются по формулам:

где - мера разброса зависимой переменной вокруг линии регрессии (необъясненная дисперсия) или - стандартная ошибка регрессии.

Сравнивая фактическое (расчетное) и критическое (табличное) значения t-статистики, т.е. tфакт и tкрит = t n-1;α - отвергаем или не отвергаем гипотезу Н0:

- если tкрит < tфакт, то Н0 отклоняется, т.е. a, b и R не случайно отличаются от нуля и сформировались под влиянием систематически действующего фактора Х.

- если tкрит > tфакт, то Н0 не отклоняется и признается случайная природа формирования a, b и R..

Фактическое значение t-критерия Стьюдента определяется как

Данная формула свидетельствует, что в парной регрессии . Кроме того . Следовательно,

Таким образом, проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.

Формулы для расчета доверительных интервалов a, b имеют следующий вид:

a - tкрит Sa ≤ a ≤ a + tкрит Sa,

b + tкрит Sb ≤ b ≤ b + tкрит Sb.

Если в границы доверительного интервала попадает ноль, т.е. нижняя граница отрицательна, а верхняя положительна, то оцениваемый параметр принимается нулевым, т.к. он не может одновременно принимать и положительное, и отрицательное значения.

8.Проверка общего качества уравнения регрессии. Для оценки качества построенной модели используют коэффициент (индекс) детерминации - R2, а также среднюю ошибку аппроксимации - А.

F-тест - оценивание качества уравнения регрессии – состоит в проверке гипотезы H0 о статистической не значимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического Fфакт и критического (табличного) Fтабл значений F -критерия Фишера. Fтабл определяется из соотношения значения объясненной и остаточной дисперсии, рассчитанных на одну степень свободы:

где n - объем выборки (объем статистической информации).

Fтабл – это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости a. Уровень значимости a - вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно a принимается равной 0,05 или 0,01.

Если Fтабл < Fфакт, то H0 - гипотеза о случайной природе оцениваемых характеристик отклоняется и признаётся их статистическая значимость и надёжность. Если Fтабл > Fфакт, то гипотеза H0 не отклоняется и признаётся статистическая незначимость, ненадёжность уравнения регрессии.

9.Интервалы прогноза по линейному уравнению регрессии. В прогнозных расчетах по уравнению регрессии определяется предсказываемое (расчетное) упрог значение как точечный прогноз при хпрогк, т.е. путем подстановки в уравнение регрессии соответствующего прогнозного значения xпрог. Однако точечный прогноз явно не реален. Поэтому он дополняется расчетом стандартной ошибки и соответственно интервальной оценкой прогнозного значения gпрогноз. Фактические значения у варьируют около среднего значения . Индивидуальные значения у могут отклоняться от на величину случайной ошибки e, дисперсия которой оценивается какостаточная дисперсии на одну степень свободы S2. Поэтому ошибка предсказываемого индивидуального значения у должна включать не только стандартную ошибку

S , но и случайную ошибку Se.

Средняя стандартная ошибка прогноза Sпрогноз вычисляется по формуле:

,

а доверительный интервал прогноза строится по формуле:

прогноз - tкрит Sпрогнозgпрогноз прогноз + tкрит Sпрогноз

 

При прогнозировании на основе уравнения регрессии следует помнить, что величина прогноза зависит не только от стандартной ошибки индивидуального значения у, но и от точности прогноза значения фактора х. Его величина может задаваться на основе анализа других моделей исходя из конкретной ситуации, а также из анализа динамики данного фактора.

10.Таблица дисперсионного анализа. Задача дисперсионного анализа состоит в анализе дисперсии зависимой переменной: å = å ( )2 + å ( )2,

где - общая сумма квадратов отклонений;

- сумма квадратов отклонений, обусловленная регрессией («объясненная», «факторная»);

- остаточная сумма квадратов отклонений (“необъясненная”).

 

Компоненты дисперсии Сумма квадратов Число степеней свободы Дисперсия на одну степень свободы
Общая n-1 -
Факторная m
Остаточная n-m-1

 

 

Нелинейная регрессия

Нелинейная регрессия -частный случай регрессионного анализа, в котором рассматриваемая регрессионная модель есть функция, зависящая от параметров и от одной или нескольких свободных переменных. Во многих практических случаях моделирование экономических зависимостей линейными уравнениями дает вполне удовлетворительный результат и может использоваться для анализа и прогнозирования. Однако в силу однообразия и сложности экономических процессов ограничиться рассмотрением лишь линейных регрессионных моделей невозможно. Многие экономические зависимости не являются линейными по своей сути, и поэтому их моделирование линейными уравнениями регрессии, безусловно, не даст положительного результата. Например, при рассмотрении спроса Y на некоторый товар от цены X данного товара в ряде случаев можно ограничиться линейным уравнением регрессии: Y=β01X. Здесь β1 характеризует абсолютное изменение Y (в среднем) при единичном изменении X. Если же мы хотим проанализировать эластичность спроса по цене, то приведенное уравнение не позволит это осуществить. В этом случае целесообразно рассмотреть так называемую логарифмическую модель

При анализе издержек Y от объема выпуска X наиболее обоснованной является полиноминальная (точнее, кубическая) модель При рассмотрении производственных функций линейная модель является нереалистичной. В этом случае обычно используются степенные модели. Например, широкую известность имеет производственная функция Кобба-Дугласа Y=AKαLβ (здесь Y – объем выпуска; K и L – затраты капитала и труда соответственно; A, α и β – параметры модели).

Достаточно широко применяются в современном эконометрическом анализе и многие другие модели, в частности обратная и экспоненциальная модели.

Построение и анализ нелинейных моделей имеют свою специфику. Приведенные выше примеры и рассуждения дают основания более детально рассмотреть возможные нелинейные модели.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: