КУРСОВАЯ РАБОТА
Выполнила:
студентка 4 курса очной формы обучения
Сергеева Екатерина Александровна
Руководитель:
Кфмн, доцент кафедры математики и МПМД
Мещеряков В.В
Итоговая оценка - ______________
Подпись______________________
Коломна 2019г
Содержание
Введение. 3
Глава 1. Метод математической индукции. 5
1. История возникновения. 5
2. Дедукция и индукция. 8
3. Полная и неполная индукция. 9
4. Принцип математической индукции. 11
Глава 2. Задачи на использование метода математической индукции. 13
1. Доказательству неравенств. 13
2. Суммирование рядов. 17
3. Задачи на делимость. 21
4. Доказательство тождеств. 24
5. Задачи на геометрическую прогрессию. 28
6. Логические задачи. 30
7. Геометрические задачи. 33
Заключение. 36
Список литературы.. 37
Введение
«Понимание и умение правильно применять принцип математической индукции, является хорошим критерием логической зрелости, которая совершенно необходима математику»
А.Н. Колмогоров
Индукция применяется при переходе от частных результатов к общим. Метод математической индукции можно наглядно представить в виде выстроенных друг за другом костей домино. Если мы толкнем первую из них, то упадут и все остальные.
Актуальность темы
Одной из отличительных черт математики является дедуктивное построение теории. Но дедукция не является единственным методом научного мышления. В экспериментальных науках велика роль индуктивных выводов. В математике индукция часто позволяет угадать формулировку теорем, а в ряде случаев и наметить пути доказательств.
В школьной программе с методом математической индукции знакомятся только поверхностно. Так, например, в 9 классе (Учебник Виленкин Н.Я., Сурвилло Г.С. и др.) метод изучают в разделе «Для тех, кто хочет знать больше». В то время как подробное знакомство с этим методом полезно учащимся не только из-за расширения их кругозора, но также и потому, что на его принципе основано решение многих задач (включая олимпиадные). Мною был изучен принцип математической индукции, а также его широкое применение в решении задач на суммирование, доказательстве тождеств, доказательстве и решении неравенств, решении вопроса делимости, при изучении свойств числовых последовательностей, при решении геометрических задач.
|
Цель работы:
познакомиться с методом математической индукции, систематизировать знания по данной теме и применить её при решении математических задач и доказательстве теорем, обосновать и наглядно показать практическое значение метода математической индукции как необходимого фактора для решения задач.
Глава 1. Метод математической индукции
История возникновения.
Чрезвычайное расширение предмета математики привлекло в XIX веке усиленное внимание к вопросам ее «обоснования», т.е. критического пересмотра ее исходных положений (аксиом), построения строгой системы определений и доказательств, а также критического рассмотрения логических примеров, употребляемых при этих доказательствах.
Только к концу XIX века сложился стандарт требований к логической строгости, остающейся и до настоящего времени господствующими в практической работе математиков над развитием отдельных математических теорий.
|
Современная математическая логика дала на этот вопрос, определенный ответ: никакая единая дедуктивная теория не может исчерпать разнообразия проблем теории чисел.
Слово индукция по-русски означает наведение, а индуктивными называют выводы, сделанные на основе наблюдений, опытов, т.е. полученные путем заключения от частного к общему.
В основе всякого математического исследования лежат дедуктивный и индуктивный методы. Дедуктивный метод рассуждений - это рассуждение от общего к частному, т.е. рассуждение, исходным моментом которого является общий результат, а заключительным моментом – частный результат. Индукция применяется при переходе от частных результатов к общим, т.е. является методом, противоположным дедуктивному.
Метод математической индукции можно сравнить с прогрессом. Мы начинаем с низшего, в результате логического мышления приходим к высшему. Человек всегда стремился к прогрессу, к умению развивать свою мысль логически, а значит, сама природа предначертала ему размышлять индуктивно.
Роль индуктивных выводов в экспериментальных науках очень велика. Они дают те положения, из которых потом путем дедукции делаются дальнейшие умозаключения. И хотя теоретическая механика основывается на трех законах движения Ньютона, сами эти законы явились результатом глубокого продумывания опытных данных, в частности законов Кеплера движения планет, выведенных им при обработке многолетних наблюдений датского астронома Тихо Браге. Наблюдение, индукция оказываются полезными и в дальнейшем для уточнения сделанных предположений. После опытов Майкельсона по измерению скорости света в движущейся среде оказалось необходимым уточнить законы физики, создать теорию относительности.
|
В математике роль индукции в значительной степени состоит в том, что она лежит в основе выбираемой аксиоматики. После того как длительная практика показала, что прямой путь всегда короче кривого или ломанного, естественно было сформулировать аксиому: для любых трех точек А, В и С выполняется неравенство
.
Лежащее в основе арифметики понятие «следовать за» тоже появилось при наблюдениях за строем солдат, кораблей и другими упорядоченными множествами.
Не следует, однако, думать, что этим исчерпывается роль индукции в математике. Разумеется, мы не должны экспериментально проверять теоремы, логически выведенные из аксиом: если при выводе, не было сделано логических ошибок, то они постольку верны, поскольку истинны принятые нами аксиомы. Но из данной системы аксиом можно вывести очень много утверждений. И отбор тех утверждений, которые надо доказывать, вновь подсказывается индукцией. Именно она позволяет отделить полезные теоремы от бесполезных, указывает, какие теоремы могут оказаться верными, и даже помогает наметить путь доказательства.
В математике уже издавна используется индуктивный метод, основанный на том, что-то или иное общее утверждение делается на основании рассмотрения лишь нескольких частных случаев. История, например, сохранила следующее высказывание Эйлера: «У меня нет для доказательства никаких других доводов, за исключением длинной индукции, которую я провел так далеко, что никоим образом не могу сомневаться в законе, управляющем образованием этих членов… И кажется невозможным, чтобы закон, который, как было обнаружено, выполняется, например, для 20 членов, нельзя было бы наблюдать и для следующих».
Веря в непогрешимость индукции, ученые иногда допускали грубые ошибки.
К середине семнадцатого столетия в математике накопилось немало ошибочных выводов. Стала сильно ощущаться потребность в научно обоснованном методе, который позволял бы делать общие выводы на основании рассмотрения нескольких частных случаев. И такой метод был разработан. Основная заслуга в этом принадлежит французским математикам Паскалю и Декарту, а также швейцарскому математику Якобу Бернулли.
Дедукция и индукция.
Известно, что существуют как частные, так и общие утверждения, и на переходе от одних к другим и основаны два данных термина.
Дедукция (от лат. deductio – выведение) – переход в процессе познания от общего знания к частному и единичному. В дедукции общее знание служит исходным пунктом рассуждения, и это общее знание предполагается «готовым», существующим. Особенность дедукции состоит в том, что истинность ее посылок гарантирует истинность заключения. Поэтому дедукция обладает огромной силой убеждения и широко применяется не только для доказательства теорем в математике, но и всюду, где необходимы достоверные знания.
Индукция (от лат. inductio – наведение) – это переход в процессе познания от частного знания к общему. Другими словами, – это метод исследования, познания, связанный с обобщением результатов наблюдений и экспериментов. Особенностью индукции является ее вероятностный характер, т.е. при истинности исходных посылок заключение индукции только вероятно истинно и в конечном результате может оказаться как истинным, так и ложным.
Полная и неполная индукция.
Различают два вида индуктивных умозаключений – полную и неполную индукцию.
Полной индукцией называется такое умозаключение, в котором общее заключение обо всех элементах класса предметов делается на основании рассмотрения каждого элемента этого класса. В полной индукции рассматриваются все предметы данного класса, а посылками служат единичные суждения. Вывод в полной индукции будет истинным, если посылки истинны.
Ход мысли осуществляется здесь по схеме:
S1 есть Р
S2 есть Р
………….
Sn есть Р
Известно, что S1, S2 … Sn исчерпывают все предметы класса. Следовательно, все S есть Р.
Пример: Старший сын в семье Ивановых, Петя, ходит в школу. Средний сын в семье Ивановых, Кирилл, ходит в школу. Их младшая сестра Катя ходит в школу. Петя, Кирилл и Катя – дети в семье Ивановых. Следовательно, все дети семьи Ивановых посещают школу.
Из этого примера видно, что общий вывод основан на знании всей совокупности предметов изучаемого класса и общий вывод представляет собой категорическое суждение, где предикат посылок и вывода один и тот же, как и вообще во всех индуктивных умозаключениях.
Полная индукция дает достоверное заключение, поэтому она часто применяется в математических и в других самых строгих доказательствах. Чтобы использовать полную индукцию, надо выполнить следующие условия:
1. Точно знать число предметов или явлений, подлежащих рассмотрению.
2. Убедиться, что признак принадлежит каждому элементу этого класса.
3. Число элементов должно быть невелико.
Неполная индукция применяется в тех случаях, когда мы
-не можем рассмотреть все элементы, рассматриваемого класса явлений;
-если число объектов либо бесконечно, либо конечно, но достаточно велико.
Пример: Железо – твердое тело; Медь – твердое тело; Золото – твердое тело; Платина – твердое тело. Следовательно, все металлы – твердые тела.
Легко видеть, что схема, по которой осуществляется вывод по неполной индукции, такова:
S1 есть Р
S2 есть Р
………….
Sn есть Р
S1, S2 …, Sn – часть класса S
Следовательно, все S есть Р.
В неполной индукции рассматриваются не все, а только некоторые элементы класса. Такой переход от некоторых ко всем не может давать истинный вывод. На этом основании неполную индукцию относят к правдоподобным умозаключениям. В таких выводах заключение следует из
истинных посылок только с определенной степенью вероятности, которая может колебаться от маловероятной до весьма правдоподобной. О неполной индукции в одном из своих писем говорил французский ученый Пьер де Ферма: «…можно было бы предложить такой вопрос и взять такое правило для его решения, которое подходило бы для многих частных случаев, и все же было бы на самом деле ложным и не всеобщим…».